Models of harmful algal blooms

Models used to study harmful algal blooms are a subset of those used to examine more general planktonic processes. Most models have been heuristic, examining the likelihood of certain processes generating a harmful algal bloom. Several models have been more closely coupled to field data and have been used to gain insights into the dynamics underlying the observations. As better physical and biological models are developed, models may play an increasingly important role in harmful algal bloom research. Techniques such as data assimilation may increase the predictive power of models, suggest strategies for improving field sampling, and better constrain poorly known parameters and processes.

[1]  P. Brasseur,et al.  Data Assimilation: Tools for Modelling the Ocean in a Global Change Perspective , 1994 .

[2]  D. Kamykowski The simulation of a Southern California red tide using characteristics of a simultaneously-measured internal wave field , 1981 .

[3]  D. Kamykowski Possible interactions between phytoplankton and semidiurnal internal tides , 1974 .

[4]  Joji Ishizaka,et al.  Coupling of coastal zone color scanner data to a physical‐biological model of the southeastern U.S. continental shelf ecosystem: 2. An Eulerian model , 1990 .

[5]  APPENDIX TO CHAPTER 12 – On a Class of Mathematical Models for Gymnodinium breve Red Tides , 1979 .

[6]  W. Ebenhöh Coexistence of an unlimited number of algal species in a model system , 1988 .

[7]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[8]  J. Truscott Environmental forcing of simple plankton models , 1995 .

[9]  Percy L. Donaghay,et al.  Toward a theory of biological‐physical control of harmful algal bloom dynamics and impacts , 1997 .

[10]  A. White Growth Inhibition Caused by Turbulence in the Toxic Marine Dinoflagellate Gonyaulax excavata , 1976 .

[11]  Peter Franks,et al.  Spatial patterns in dense algal blooms , 1997 .

[12]  D. Anderson,et al.  IDENTIFICATION OF GROUP‐ AND STRAIN‐SPECIFIC GENETIC MARKERS FOR GLOBALLY DISTRIBUTED ALEXANDRIUM (DINOPHYCEAE). II. SEQUENCE ANALYSIS OF A FRAGMENT OF THE LSU rRNA GENE 1 , 1994 .

[13]  J. Verreth,et al.  A Dynamic Simulation-Model for the Blooming of Oscillatoria- Agardhii in a Monomictic Lake , 1995 .

[14]  Y. Ishida,et al.  ANALYSIS OF ALEXANDRIUM (DINOPHYCEAE) SPECIES USING SEQUENCES OF THE 5.8S RIBOSOMAL DNA AND INTERNAL TRANSCRIBED SPACER REGIONS 1 , 1996 .

[15]  D. Kamykowski Laboratory experiments on the diurnal vertical migration of marine dinoflagellates through temperature gradients , 1981 .

[16]  C. Scholin,et al.  IDENTIFICATION OF CULTURED PSEUDO‐NITZSCHIA (BACILLARIOPHYCEAE) USING SPECIES‐SPECIFIC LSU rRNA‐TARGETED FLUORESCENT PROBES 1 , 1996 .

[17]  Joji Ishizaka,et al.  Coupling of coastal zone color scanner data to a physical‐biological model of the southeastern U.S. continental shelf ecosystem: 3. Nutrient and phytoplankton fluxes and CZCS data assimilation , 1990 .

[18]  M. Kishi,et al.  Population dynamics of ‘red tide’ organisms in eutrophicated coastal waters — Numerical experiment of phytoplankton bloom in the East Seto Inland Sea, Japan , 1986 .

[19]  A. Moore,et al.  Initialization and Data Assimilation in Models of the Indian Ocean , 1987 .

[20]  Hans G. Othmer,et al.  On the resonance structure in a forced excitable system , 1990 .

[21]  M. R. Droop,et al.  Vitamin B12 and Marine Ecology. IV. The Kinetics of Uptake, Growth and Inhibition in Monochrysis Lutheri , 1968, Journal of the Marine Biological Association of the United Kingdom.

[22]  G. P. Cressman AN OPERATIONAL OBJECTIVE ANALYSIS SYSTEM , 1959 .

[23]  T. Wyatt,et al.  Model which Generates Red Tides , 1973, Nature.

[24]  J. M. Lewis,et al.  The use of adjoint equations to solve a variational adjustment problem with advective constraints , 1985 .

[25]  H. Redkey,et al.  A new approach. , 1967, Rehabilitation record.

[26]  M. Vernet,et al.  EFFECTS OF SMALL‐SCALE TURBULENCE ON PHOTOSYNTHESIS, PIGMENTATION, CELL DIVISION, AND CELL SIZE IN THE MARINE DINOFLAGELLATE GOMAULAX POLYEDRA (DINOPHYCEAE) 1 , 1995 .

[27]  G. E. Hutchinson,et al.  The Balance of Nature and Human Impact: The paradox of the plankton , 2013 .

[28]  J. Truscott,et al.  Equilibria, stability and excitability in a general class of plankton population models , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[29]  W. Thomas,et al.  Effects of quantified small-scale turbulence on the dinoflagellate, Gymnodium sanguineum (splendens): contrasts with Gonyaulax (Lingulodinium) polyedra, and the fishery implication , 1992 .

[30]  T. Yamamoto,et al.  A numerical simulation of red tide formation , 1995 .

[31]  L. Edler,et al.  Dinoflagellate distribution in the Southeastern Kattegat during an autumn bloom , 1991 .

[32]  Andrew F. Bennett,et al.  Inverse Methods in Physical Oceanography: Bibliography , 1992 .

[33]  Robert A. Armstrong,et al.  Monitoring Ocean Productivity by Assimilating Satellite Chlorophyll into Ecosystem Models , 1995 .

[34]  W. Mitsch,et al.  Turbulence and phytoplankton diversity: A general model of the “paradox of plankton”☆ , 1979 .

[35]  D. Anderson,et al.  IDENTIFICATION OF GROUP‐ AND STRAIN‐SPECIFIC GENETIC MARKERS FOR GLOBALLY DISTRIBUTED ALEXANDRIUM (DINOPHYCEAE). I. RFLP ANALYSIS OF SSU rRNA GENES 1 , 1994 .

[36]  E. Berdalet EFFECTS OF TURBULENCE ON THE MARINE DINOFLAGELLATE GYMNODINIUM NELSONII 1 , 1992 .

[37]  Eileen E. Hofmann,et al.  A data assimilation technique applied to a predator-prey model , 1995 .

[38]  M. Kishi,et al.  Criterion for stability of phytoplankton patchiness using a Liapunov method , 1978 .

[39]  W. Thomas,et al.  Effects of turbulence intermittency on growth inhibition of a red tide dinoflagellate, Gonyaulax polyedra Stein , 1995 .

[40]  S. Jørgensen,et al.  Application of Ecological Modelling in Environmental Management , 1983 .

[41]  Coexistence of any number of species in the Lotka-Volterra competitive system over two-patches , 1990 .

[42]  W. Thomas,et al.  Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein , 1990 .

[43]  Y. Sako,et al.  RESTRICTION FRAGMENT LENGTH POLYMORPHISM OF RIBOSOMAL DNA INTERNAL TRANSCRIBED SPACER AND 5.8S REGIONS IN JAPANESE ALEXANDRIUM SPECIES (DINOPHYCEAE) 1 , 1994 .