Exact explicit traveling wave solutions for two nonlinear Schrödinger type equations

Abstract The traveling wave solutions of the generalized nonlinear derivative Schrodinger equation and the high-order dispersive nonlinear Schrodinger equation are studied by using the approach of dynamical systems and the theory of bifurcations. With the aid of Maple, all bifurcations and phase portraits in the parametric space are obtained. All possible explicit parametric representations of the bounded traveling wave solutions (solitary wave solutions, kink and anti-kink wave solutions and periodic wave solutions) are given.

[1]  Shun-dong Zhu,et al.  Exact solutions for the high-order dispersive cubic-quintic nonlinear Schrödinger equation by the extended hyperbolic auxiliary equation method , 2007 .

[2]  Guanrong Chen,et al.  Bifurcations of Traveling Wave Solutions for Four Classes of Nonlinear Wave Equations , 2005, Int. J. Bifurc. Chaos.

[3]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[4]  R. Hirota,et al.  Soliton solutions of a coupled Korteweg-de Vries equation , 1981 .

[5]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[6]  B. Guo,et al.  Orbital Stability of Solitary Waves for the Nonlinear Derivative Schrödinger Equation , 1995 .

[7]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[8]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[9]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[10]  Jibin Li,et al.  Exact travelling wave solutions for the (n+1)-dimensional double sine- and sinh-Gordon equations , 2007, Appl. Math. Comput..

[11]  Guanrong Chen,et al.  Bifurcations of Traveling Wave and Breather Solutions of a General Class of Nonlinear Wave Equations , 2005, Int. J. Bifurc. Chaos.

[12]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[13]  Jibin Li,et al.  Smooth and non-smooth traveling waves in a nonlinearly dispersive equation , 2000 .

[14]  Jianke Yang,et al.  Classification of the solitary waves in coupled nonlinear Schro¨dinger equations , 1997 .

[15]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[16]  Jibin Li,et al.  TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS , 2002 .

[17]  V. Prasolov,et al.  Elliptic functions and elliptic integrals , 1997 .

[18]  O. H. El-Kalaawy,et al.  Extended tanh-function method and reduction of nonlinear Schrödinger-type equations to a quadrature , 2007 .

[19]  M. Shubin,et al.  The Schrödinger Equation , 1991 .

[20]  De-sheng Li,et al.  Explicit and exact travelling wave solutions for the generalized derivative Schrödinger equation , 2007 .