Modelling of stress-corrosion cracking by using peridynamics

We present for the first time a numerical multiphysics peridynamic framework for the modelling of adsorbed-hydrogen stress-corrosion cracking (SCC), based on the adsorption-induced decohesion mechanism. The material is modelled at the microscopic scale using microstructural data. First-principle studies available in the literature are used for characterizing the process of intergranular material strength degradation. The model consists of a polycrystalline AISI 4340 high-strength low-alloy (HSLA) thin, pre-cracked steel plate subjected to a constant displacement controlled loading and exposed to an aqueous solution. Different values of stress intensity factor (SIF) are considered, and the resulting crack propagation speed and branching behaviour are found to be in good agreement with experimental results available in the literature.

[1]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[2]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[3]  Jianhong He,et al.  Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures , 1998 .

[4]  Robert H. Dodds,et al.  Modeling of hydrogen-assisted ductile crack propagation in metals and alloys , 2007 .

[5]  L. E. Thomas,et al.  High-Resolution Characterization of Intergranular Attack and Stress Corrosion Cracking of Alloy 600 in High-Temperature Primary Water , 2000 .

[6]  Mechanistic and fractographic aspects of stress corrosion cracking , 2011 .

[7]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[8]  Y. Mine,et al.  Hydrogen uptake in austenitic stainless steels by exposure to gaseous hydrogen and its effect on tensile deformation , 2011 .

[9]  V. Olden,et al.  3D cohesive modelling of hydrogen embrittlement in the heat affected zone of an X70 pipeline steel , 2013 .

[10]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[11]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[12]  I. Scheider,et al.  Simulation of hydrogen assisted stress corrosion cracking using the cohesive model , 2008 .

[13]  Erkan Oterkus,et al.  Peridynamic analysis of fiber-reinforced composite materials , 2012 .

[14]  Erkan Oterkus,et al.  Hygro-thermo-mechanical analysis and failure prediction in electronic packages by using peridynamics , 2014, 2014 IEEE 64th Electronic Components and Technology Conference (ECTC).

[15]  M. Ortiz,et al.  A quantum-mechanically informed continuum model of hydrogen embrittlement , 2004 .

[16]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[17]  R. A. Oriani,et al.  Equilibrium aspects of hydrogen-induced cracking of steels , 1974 .

[18]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[19]  R. Lehoucq,et al.  Peridynamic Simulation of Electromigration , 2008 .

[20]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[21]  R. Johnsen,et al.  FE simulation of hydrogen diffusion in duplex stainless steel , 2014 .

[22]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[23]  Yong Zhang,et al.  Molecular dynamics simulation of stress corrosion cracking in Cu3Au , 2002 .

[24]  E. Carter,et al.  First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals , 2004 .

[25]  G. Lubineau,et al.  An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines , 2012 .

[26]  Erkan Oterkus,et al.  Peridynamic Theory and Its Applications , 2013 .

[27]  Michael L. Parks,et al.  ON THE ROLE OF THE INFLUENCE FUNCTION IN THE PERIDYNAMIC THEORY , 2011 .

[28]  R. McMeeking,et al.  Numerical analysis of hydrogen transport near a blunting crack tip , 1989 .

[29]  T. Mura,et al.  Nucleation mechanism of stress corrosion cracking from notches , 2014 .

[30]  T. Mura,et al.  Growth Mechanism of Stress Corrosion Cracking in High Strength Steel , 1984 .

[31]  W. Brocks,et al.  Simulation of Stress-Corrosion Cracking by the Cohesive Model , 2009 .

[32]  Dennj De Meo,et al.  Peridynamic Modeling of Granular Fracture in Polycrystalline Materials , 2015 .

[33]  M. Ortiz,et al.  A three-dimensional multiscale model of intergranular hydrogen-assisted cracking , 2010 .

[34]  S. K. Maiti,et al.  Modelling of mode-I stable crack growth under hydrogen assisted stress corrosion cracking , 2011 .

[35]  Y. Mishin,et al.  Grain boundary diffusion: recent progress and future research , 1999 .

[36]  J. Rimoli A computational model for intergranular stress corrosion cracking , 2009 .

[37]  T. Rabczuk,et al.  A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks , 2007 .

[38]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[39]  T. Rabczuk,et al.  On three-dimensional modelling of crack growth using partition of unity methods , 2010 .

[40]  L. G. Harrison Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides , 1961 .

[41]  W. Hosford The mechanics of crystals and textured polycrystals , 1993 .

[42]  P. Arnoux Atomistic simulations of stress corrosion cracking , 2010 .

[43]  J. C. Fisher Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion , 1951 .

[44]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[45]  R. Ritchie,et al.  Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials , 2009 .

[46]  E. Busso,et al.  A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement , 2012 .

[47]  Erdogan Madenci,et al.  Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot , 2012 .

[48]  V. S. Raja,et al.  Stress corrosion cracking: Theory and practice , 2011 .

[49]  H. Hänninen,et al.  Effect of hydrogen on plastic strain localization in single crystals of austenitic stainless steel , 2010 .

[50]  R. Lehoucq,et al.  Peridynamics for multiscale materials modeling , 2008 .