High power MWIR quantum cascade lasers and their use in intra-cavity THz room temperature generation

In this paper we review our results on high power quantum cascade lasers in the mid- and long-wave infrared regions of the spectrum (4-12um). The specifications and characteristics of state-of-the-art QC lasers fabricated by MOCVD technology are illustrated, along with their key application requirements and potential issues for future improvements. Single emitter QC lasers in the Watt-class range are presented and analyzed. In addition, we explore the use of high power QCLs for THz generation at room temperature by non-linear mixing of high power mid-infrared beams in a monolithic intra-cavity design. The THz radiation so obtained is widely tunable by electrical injection. Experimentally, we demonstrate ridge waveguide single mode devices electrically tunable between 3.44 and 4.02 THz.

[1]  Carlo Sirtori,et al.  Distributed feedback quantum cascade lasers , 1997 .

[2]  C. Sirtori,et al.  Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers. , 2012, Optics express.

[3]  Manijeh Razeghi,et al.  Current status and potential of high-power mid-infrared intersubband lasers , 2010, OPTO.

[4]  P. Siegel Terahertz Technology , 2001 .

[5]  Qing Hu,et al.  Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. , 2007, Optics express.

[6]  M. A. Belkin,et al.  Mid-Infrared Quantum Cascade Lasers With Electrical Control of the Emission Frequency , 2013, IEEE Journal of Quantum Electronics.

[7]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[8]  J. Faist,et al.  Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation , 2008 .

[9]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[10]  Claire F. Gmachl,et al.  A widely voltage-tunable quantum cascade laser based on “two-step” coupling , 2009 .

[11]  N. Yu,et al.  High-Performance Quantum Cascade Lasers Grown by Metal-Organic Vapor Phase Epitaxy and Their Applications to Trace Gas Sensing , 2008, Journal of Lightwave Technology.

[12]  Jérôme Faist,et al.  Terahertz photonic crystal quantum cascade lasers. , 2007, Optics express.

[13]  Marcella Giovannini,et al.  Small optical volume terahertz emitting microdisk quantum cascade lasers , 2007 .

[14]  D. Botez,et al.  Multidimensional Conduction-Band Engineering for Maximizing the Continuous-Wave (CW) Wallplug Efficiencies of Mid-Infrared Quantum Cascade Lasers , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Alexei Tsekoun,et al.  λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature. , 2011, Optics express.

[16]  Manijeh Razeghi,et al.  2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers , 2011 .

[17]  Federico Capasso,et al.  Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers , 2002 .

[18]  Manijeh Razeghi,et al.  Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting , 2013 .

[19]  S. A. Pavlov,et al.  Induced hot-hole millimeter emission in germanium in fields E∥H (cyclotron-resonance negative-effective-mass amplifier and generator) , 1984 .

[20]  Johannes Koeth,et al.  Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector. , 2012, Optics express.

[21]  C. Gmachl,et al.  Voltage Tunability of Quantum Cascade Lasers , 2009, IEEE Journal of Quantum Electronics.

[22]  Manijeh Razeghi,et al.  Room temperature quantum cascade lasers with 27% wall plug efficiency , 2011 .

[23]  Robert R. Alfano,et al.  Terahertz sources. , 2011, Journal of biomedical optics.

[24]  Mykhaylo P. Semtsiv,et al.  Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers , 2013 .

[25]  Manijeh Razeghi,et al.  Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation , 2012 .

[26]  Jerry R. Meyer,et al.  Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers , 2010 .

[27]  C. Kumar N. Patel,et al.  Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power. , 2012, Optics express.

[28]  M. Panish Molecular-beam epitaxy , 1989, AT&T Technical Journal.

[29]  Federico Capasso,et al.  High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W , 2010, Proceedings of the National Academy of Sciences.

[30]  Scott W. Corzine,et al.  High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy , 2006 .

[31]  Seong-Wook Park,et al.  Optically induced fast wavelength modulation in a quantum cascade laser , 2010 .

[32]  Seungyong Jung,et al.  Optically tunable long wavelength infrared quantum cascade laser operated at room temperature , 2013 .

[33]  P. Collot,et al.  Quantum Cascade Lasers , 1997, CLEO/Europe Conference on Lasers and Electro-Optics.

[34]  Karun Vijayraghavan,et al.  Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers , 2012 .

[35]  Qing Hu,et al.  Tuning a terahertz wire laser , 2009, 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM).

[36]  Jacob B. Khurgin,et al.  Highly power-efficient quantum cascade lasers , 2010 .

[37]  E. Gini,et al.  Room temperature continuous wave operation of quantum cascade lasers , 2002, IEEE 18th International Semiconductor Laser Conference.

[38]  Carlo Sirtori,et al.  Nonlinear phase matching in THz semiconductor waveguides , 2004 .

[39]  Manijeh Razeghi,et al.  Extended electrical tuning of quantum cascade lasers with digital concatenated gratings , 2013 .

[40]  Seungyong Jung,et al.  Distributed feedback quantum cascade laser with optically tunable emission frequency , 2013 .

[41]  Aiting Jiang,et al.  Broadly tunable terahertz generation in mid-infrared quantum cascade lasers , 2013, Nature Communications.

[42]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[43]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[44]  C. Caneau,et al.  Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm , 2012, ISLC 2012 International Semiconductor Laser Conference.

[45]  M. Aoki,et al.  Single-mode properties of distributed-reflector lasers , 1989 .

[46]  Richard P. Leavitt,et al.  High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions , 2010 .

[47]  Qi Jie Wang,et al.  3 W Continuous-Wave Room Temperature Single-Facet Emission From Quantum Cascade Lasers Based On Nonresonant Extraction Design Approach , 2009 .

[48]  Mariano Troccoli,et al.  Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ>6 μm) , 2010 .

[49]  Manijeh Razeghi,et al.  High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers , 2012 .

[50]  Qing Hu,et al.  MEMS-based tunable terahertz wire-laser over 330 GHz. , 2011, Optics letters.

[51]  Mattias Beck,et al.  Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power. , 2013, Optics express.

[52]  Mariano Troccoli,et al.  THz Difference-Frequency Generation in MOVPE-Grown Quantum Cascade Lasers , 2014, IEEE Photonics Technology Letters.

[53]  Alfred Y. Cho,et al.  Molecular Beam Epitaxy , 2003 .

[54]  Mariano Troccoli,et al.  High-Performance Quantum Cascade Lasers for Industrial Applications , 2013 .

[55]  Mattias Beck,et al.  Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.

[56]  Mariano Troccoli,et al.  Long-Wave IR Quantum Cascade Lasers for emission in the λ = 8-12μm spectral region , 2013 .

[57]  A. Davies,et al.  Terahertz semiconductor-heterostructure lasers , 2002, Summaries of Papers Presented at the Lasers and Electro-Optics. CLEO '02. Technical Diges.

[58]  F. Capasso,et al.  Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation , 2007 .

[59]  A. Wittmann,et al.  Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 $\mu$ m , 2009, IEEE Photonics Technology Letters.

[60]  Qi Jie Wang,et al.  High-Temperature Operation of Terahertz Quantum Cascade Laser Sources , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[61]  Federico Capasso,et al.  Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy , 2005 .

[62]  Xavier Marcadet,et al.  Top grating index-coupled distributed feedback quantum cascade lasers , 2008 .

[63]  Alexei Tsekoun,et al.  Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. , 2012, Optics express.

[64]  Catherine Caneau,et al.  High power continuous wave operation of distributed Bragg reflector quantum cascade laser , 2013, CLEO: 2013.

[65]  Tao Yang,et al.  Optical modulation of quantum cascade laser with optimized excitation wavelength. , 2013, Optics letters.

[66]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.