Improved algorithm for tolerance allocation based on Monte Carlo simulation and discrete optimization

The allocation of design and manufacturing tolerances has a significant effect on both manufacturing cost and quality. This paper considers nonlinearly constrained tolerance allocation problems. The purpose is to minimize the ratio between the sum of the manufacturing costs (tolerances costs) and the risk (probability of the respect of geometrical requirements). The techniques of Monte Carlo simulation and genetic algorithm are adopted to solve these problems. As the simplest and the popular method for non-linear statistical tolerance analysis, the Monte Carlo simulation is introduced into the frame. Moreover, in order to make the frame efficient, the genetic algorithm is improved according to the features of the Monte Carlo simulation. An illustrative example (hyperstatic mechanism) is given to demonstrate the efficiency of the proposed approach.

[1]  Zhihua Zou,et al.  A gap-based approach to capture fitting conditions for mechanical assembly , 2004, Comput. Aided Des..

[2]  Joshua U. Turner,et al.  Using Monte-Carlo variance reduction in statistical tolerance synthesis , 1997, Comput. Aided Des..

[3]  Ben Wang,et al.  STATISTICAL TOLERANCE SYNTHESIS USING DISTRIBUTION FUNCTION ZONES , 1999 .

[4]  Denis Teissandier,et al.  Operations on polytopes: application to tolerance analysis , 2011, ArXiv.

[5]  Shaw C. Feng,et al.  Incoporating Process Planning into Conceptual Design , 1999 .

[6]  Rikard Söderberg,et al.  Tolerance Chain Detection by Geometrical Constraint Based Coupling Analysis , 1999 .

[7]  Joshua U. Turner,et al.  Estimating gradients for statistical tolerance synthesis , 1996, Comput. Aided Des..

[8]  Jeffrey P. Kharoufeh,et al.  Statistical tolerance analysis for non-normal or correlated normal component characteristics , 2002 .

[9]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[10]  Øyvind Bjørke,et al.  Computer Aided Tolerancing , 1989 .

[11]  R. N. Roth,et al.  Genetic algorithms in statistical tolerancing , 1999 .

[12]  Ben Wang,et al.  Statistical tolerance analysis using FRPDF and numerical convolution , 1996, Comput. Aided Des..

[13]  B. Anselmetti,et al.  Functional tolerancing of complex mechanisms: Identification and specification of key parts , 2005, Comput. Ind. Eng..

[14]  Anna C. Thornton Variation Risk Management Using Modeling and Simulation , 1999 .

[15]  Jean-Yves Dantan,et al.  Tolerance synthesis: quantifier notion and virtual boundary , 2005, Comput. Aided Des..

[16]  Leo Joskowicz,et al.  Kinematic tolerance analysis , 1997, Comput. Aided Des..

[17]  Herbert B. Voelcker,et al.  The current state of affairs in dimensional tolerancing: 1997 , 1998 .

[18]  Joshua U. Turner,et al.  Variational solid modeling for tolerance analysis , 1993, IEEE Computer Graphics and Applications.

[19]  Rikard Söderberg,et al.  Automated seam variation and stability analysis for automotive body design , 2001 .

[20]  C. Butler Computer aided tolerancing: (2nd edn) by Oyvind Bjorke. Published by the Society of Mechanical Engineers, USA. 1989. 216pp. £21 , 1992 .

[21]  Walton M. Hancock,et al.  Computer aided tolerance analysis for improved process control , 2000 .

[22]  Dean M. Robinson,et al.  Geometric Tolerancing for Assembly with Maximum Material Parts , 1998 .

[23]  Dwight DeDoncker,et al.  Assembly Tolerance Analysis with Simulation and Optimization Techniques , 1987 .

[24]  Luc Laperrière,et al.  Monte Carlo simulation of tolerance synthesis equations , 2001 .

[25]  Pierre Bourdet,et al.  A Computation Method for the Consequences of Geometric Errors in Mechanisms , 1998 .

[26]  Bernard Anselmetti,et al.  Coupling experimental design - digital simulation of junctions for the development of complex tolerance chains , 2003, Comput. Ind..

[27]  Leo Joskowicz,et al.  Parametric kinematic tolerance analysis of planar mechanisms , 1997, Comput. Aided Des..

[28]  Joshua U. Turner,et al.  Review of statistical approaches to tolerance analysis , 1995, Comput. Aided Des..

[29]  Utpal Roy,et al.  Representation and interpretation of geometric tolerances for polyhedral objects - I. Form tolerances , 1998, Comput. Aided Des..

[30]  Satish C. Jain,et al.  Advanced optimal tolerance design of mechanical assemblies with interrelated dimension chains and process precision limits , 2005, Comput. Ind..

[31]  Alan Duncan Fleming,et al.  Analysis of uncertainties and geometric tolerances in assemblies of parts , 1987 .

[32]  Glen E. Johnson,et al.  Optimal tolerance allotment using a genetic algorithm and truncated Monte Carlo simulation , 1993, Comput. Aided Des..

[33]  Angus Jeang,et al.  Optimal tolerance design by response surface methodology , 1999 .

[34]  Kenneth W. Chase,et al.  A survey of research in the application of tolerance analysis to the design of mechanical assemblies , 1991 .

[35]  L. F. Hauglund,et al.  Least Cost Tolerance Allocation for Mechanical Assemblies with Automated Process Selection , 1990 .

[36]  E. Sandgren,et al.  Tolerance Optimization Using Genetic Algorithms: Benchmarking with Manual Analysis , 1996 .

[37]  Hong-Chao Zhang Advanced Tolerancing Techniques , 1997 .

[38]  Utpal Roy,et al.  Representation and interpretation of geometric tolerances for polyhedral objects. II.: Size, orientation and position tolerances , 1999, Comput. Aided Des..

[39]  Y. Hong,et al.  Tolerancing algebra: A building block for handling tolerance interactions in design and manufacturing , 2003 .

[40]  S. Kanai,et al.  Optimal Tolerance Synthesis by Genetic Algorithm under the Machining and Assembling Constraints , 1996 .