Genetics of mouse hepatitis virus transcription: Identification of cistrons which may function in positive and negative strand RNA synthesis

[1]  R. Baric,et al.  Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups , 1990, Virology.

[2]  S. Sawicki,et al.  Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis , 1990, Journal of virology.

[3]  M. Lai,et al.  Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus , 1989, Virology.

[4]  M. Lai,et al.  Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein , 1989, Journal of virology.

[5]  M. Lai,et al.  Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome , 1989, Journal of virology.

[6]  D. Brian,et al.  Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[7]  P. Zoltick,et al.  Molecular cloning of the gene encoding the putative polymerase of mouse hepatitis coronavirus, strain A59 , 1989, Virology.

[8]  J. H. Strauss,et al.  Mapping of RNA- temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins , 1989, Journal of virology.

[9]  J. H. Strauss,et al.  Mapping of RNA- temperature-sensitive mutants of Sindbis virus: complementation group F mutants have lesions in nsP4 , 1989, Journal of virology.

[10]  Marian C. Horzinek,et al.  Coronaviruses: structure and genome expression. , 1988, The Journal of general virology.

[11]  R. Baric,et al.  Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription , 1988, Journal of virology.

[12]  R. Baric,et al.  Specific interaction between coronavirus leader RNA and nucleocapsid protein , 1988, Journal of virology.

[13]  Marian C. Horzinek,et al.  Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus , 1988, Virology.

[14]  M. Lai,et al.  RNA recombination of murine coronaviruses: recombination between fusion-positive mouse hepatitis virus A59 and fusion-negative mouse hepatitis virus 2 , 1988, Journal of virology.

[15]  M. Lai,et al.  Temporal regulation of bovine coronavirus RNA synthesis , 1988, Virus Research.

[16]  I. Brierley,et al.  An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. , 1987, The EMBO journal.

[17]  M. Lai,et al.  Sequence and translation of the murine coronavirus 5'-end genomic RNA reveals the N-terminal structure of the putative RNA polymerase , 1987, Journal of virology.

[18]  J. Fleming,et al.  RNA recombination of coronaviruses: localization of neutralizing epitopes and neuropathogenic determinants on the carboxyl terminus of peplomers. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[19]  K. Holmes,et al.  In vitro replication of mouse hepatitis virus strain A59 , 1987, Journal of virology.

[20]  S. Perlman,et al.  Identification of putative polymerase gene product in cells infected with murine coronavirus A59 , 1987, Virology.

[21]  R. Baric,et al.  Analysis of intracellular small RNAs of mouse hepatitis virus: evidence for discontinuous transcription , 1987, Virology.

[22]  M. Lai,et al.  Multiple recombination sites at the 5′-end of murine coronavirus RNA , 1987, Virology.

[23]  T. Brown,et al.  Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. , 1987, The Journal of general virology.

[24]  S. Perlman,et al.  Translation and processing of mouse hepatitis virus virion RNA in a cell-free system , 1986, Journal of virology.

[25]  M. Lai,et al.  Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Lai,et al.  High-frequency RNA recombination of murine coronaviruses , 1986, Journal of virology.

[27]  S. Sawicki,et al.  Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis , 1986, Journal of virology.

[28]  R. Baric,et al.  Recombination between nonsegmented RNA genomes of murine coronaviruses , 1985, Journal of virology.

[29]  R. Baric,et al.  Characterization of leader-related small RNAs in coronavirus-infected cells: Further evidence for leader-primed mechanism of transcription , 1985, Virus Research.

[30]  L. Sturman,et al.  The novel glycoproteins of coronaviruses , 1985, Trends in Biochemical Sciences.

[31]  D. Melton,et al.  Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. , 1984, Nucleic acids research.

[32]  R. Baric,et al.  Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Armstrong,et al.  Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus , 1984, Nature.

[34]  M. Lai,et al.  Further characterization of mouse hepatitis virus RNA-dependent RNA polymerases , 1984, Virology.

[35]  R. Baric,et al.  Characterization of replicative intermediate RNA of mouse hepatitis virus: presence of leader RNA sequences on nascent chains , 1983, Journal of virology.

[36]  J. Armstrong,et al.  Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. , 1983, The EMBO journal.

[37]  M. Skinner,et al.  Coronavirus JHM: nucleotide sequence of the mRNA that encodes nucleocapsid protein. , 1983, Nucleic acids research.

[38]  R. Baric,et al.  Presence of leader sequences in the mRNA of mouse hepatitis virus , 1983, Journal of virology.

[39]  A. Osterhaus,et al.  Temperature-sensitive mutants of mouse hepatitis virus strain A59: Isolation, characterization and neuropathogenic properties , 1983, Virology.

[40]  S. Siddell Coronavirus JHM: coding assignments of subgenomic mRNAs. , 1983, The Journal of general virology.

[41]  M. Lai,et al.  Replication of mouse hepatitis virus: negative-stranded RNA and replicative form RNA are of genome length , 1982, Journal of virology.

[42]  J. Leibowitz,et al.  Genetic analysis of murine hepatitis virus strain JHM , 1982, Journal of virology.

[43]  M. Lai,et al.  Characterization of two RNA polymerase activities induced by mouse hepatitis virus , 1982, Journal of virology.

[44]  L. Kääriäinen,et al.  A Sindbis virus mutant temperature-sensitive in the regulation of minus-strand RNA synthesis. , 1981, Virology.

[45]  K. Wilhelmsen,et al.  The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM☆ , 1981, Virology.

[46]  L. Kääriäinen,et al.  Specific Sindbis virus-coded function for minus-strand RNA synthesis , 1981, Journal of virology.

[47]  K. Holmes,et al.  Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid , 1980, Journal of virology.

[48]  V. ter meulen,et al.  Genomic RNA of the murine coronavirus JHM. , 1978, The Journal of general virology.

[49]  M. Lai,et al.  RNA of mouse hepatitis virus , 1978, Journal of virology.

[50]  D. Sawicki,et al.  Mechanism for Control of Synthesis of Semliki Forest Virus 26S and 42S RNA , 1978, Journal of virology.