Minimal truncation error constants for Runge-Kutta method for stochastic optimal control problems

Abstract In this work, we obtain strong order-1 conditions with minimal truncation error constants of Runge–Kutta method for the optimal control of stochastic differential equations (SDEs). We match Stratonovich–Taylor expansion of the exact solution with Stratonovich–Taylor expansion of our approximation method that is defined by the Runge–Kutta scheme, term by term, in order to get the strong order-1 conditions. By a conclusion and an outlook to future research, the paper ends.

[1]  Andreas Rößler,et al.  Rooted Tree Analysis for Order Conditions of Stochastic Runge-Kutta Methods for the Weak Approximation of Stochastic Differential Equations , 2006 .

[2]  Andreas Rößler,et al.  Runge-Kutta Methods for the Strong Approximation of Solutions of Stochastic Differential Equations , 2010, SIAM J. Numer. Anal..

[3]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[4]  C. Yalçin Kaya,et al.  Inexact Restoration for Runge-Kutta Discretization of Optimal Control Problems , 2010, SIAM J. Numer. Anal..

[5]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[6]  Pamela Burrage,et al.  Runge-Kutta methods for stochastic differential equations , 1999 .

[7]  Kevin Burrage,et al.  Order Conditions of Stochastic Runge-Kutta Methods by B-Series , 2000, SIAM J. Numer. Anal..

[8]  K. Burrage,et al.  High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations , 1996 .

[9]  J. Frédéric Bonnans,et al.  Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control , 2006, Numerische Mathematik.

[10]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[11]  Jingtao Shi,et al.  An effective gradient projection method for stochastic optimal control , 2013 .

[12]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[13]  X. Zhou,et al.  Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .

[14]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[15]  W. Rüemelin Numerical Treatment of Stochastic Differential Equations , 1982 .