Two- and three-dimensional light bullets in a Kerr medium with dispersion management

In this paper we treat two and three dimensional light bullets by somewhat different methods. In both cases stability is achieved for some parameters. In the first case we propose a scheme for stabilizing spatiotemporal solitons (STS) in media with cubic self-focusing nonlinearity and "dispersion management", i.e., a layered structure inducing periodically alternating normal and anomalous group-velocity dispersion . We develop a variational approximation for the STS, and verify results by direct simulations. A stability region for the 2D (two-dimensional) STS is identified. A new stable object, in the form of a periodically oscillating bound state of two subpulses, is also found. We go on to also demonstrate a possibility to stabilize fully three-dimensional spatiotemporal solitons ("light bullets") in the same self-focusing Kerr media by means of a combination of dispersion management in the longitudinal direction and periodic modulation of the refractive index in one of the transverse directions. Assuming the usual model based on the paraxial nonlinear Schrodinger equation for the local amplitude of the electromagnetic field, the analysis relies upon the variational approximation. A predicted stability area is identified in the model's parameter space.

[1]  Hiroki Saito,et al.  Dynamically stabilized bright solitons in a two-dimensional bose-einstein condensate. , 2003, Physical review letters.

[2]  Vladimir V. Konotop,et al.  Nonlinear waves : classical and quantum aspects , 2005 .

[3]  L. Torner,et al.  Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  F. M. Knox,et al.  Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion , 1997 .

[5]  Boris A. Malomed,et al.  Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity , 2002 .

[6]  B. A. Malomed,et al.  Stabilization of three-dimensional matter-waves solitons in an optical lattice , 2005 .

[7]  B. A. Malomed,et al.  Multidimensional solitons in periodic potentials , 2003 .

[8]  Lluis Torner,et al.  Rotary solitons in bessel optical lattices. , 2004, Physical review letters.

[9]  Algis S. Piskarskas,et al.  Observation of temporal solitons in second-harmonic generation with tilted pulses , 1998, Nonlinear Guided Waves and Their Applications.

[10]  Marek Trippenbach,et al.  Self-consistent treatment of the full vectorial nonlinear optical pulse propagation equation in an isotropic medium , 2003 .

[11]  Diana Anderson,et al.  Variational approach to collapse of optical pulses , 1991 .

[12]  Frank W. Wise,et al.  Generation of Optical Spatiotemporal Solitons , 1999 .

[13]  J P Torres,et al.  Stable spinning optical solitons in three dimensions. , 2002, Physical review letters.

[14]  Govind P. Agrawal,et al.  Effects of third-order dispersion on dispersion-managed solitons , 1999 .

[15]  Koshiba,et al.  Multidimensional solitons in quadratic nonlinear media. , 1993, Physical review letters.

[16]  D E Edmundson,et al.  Robust bistable light bullets. , 1992, Optics letters.

[17]  B. Malomed,et al.  Two-dimensional dispersion-managed light bullets in Kerr media. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Boris A. Malomed,et al.  Chapter 2 - Variational methods in nonlinear fiber optics and related fields , 2002 .

[19]  Y. Silberberg Collapse of optical pulses. , 1990, Optics letters.

[20]  B. A. Malomed,et al.  Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length , 2003 .

[21]  Víctor M. Pérez-García,et al.  Stabilization of solitons of the multidimensional nonlinear Schrodinger equation: Matter-wave breathers , 2003, nlin/0305030.

[22]  Gadi Fibich,et al.  Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension , 1999, SIAM J. Appl. Math..

[23]  B. Malomed,et al.  Spatiotemporal optical solitons , 2005 .

[24]  Luc Bergé,et al.  Wave collapse in physics: principles and applications to light and plasma waves , 1998 .

[25]  B. A. Malomed,et al.  Multidimensional solitons in a low-dimensional periodic potential (9 pages) , 2004 .

[26]  W Forysiak,et al.  Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion. , 1998, Optics letters.

[27]  F. Krausz,et al.  NONLINEAR OPTICAL PULSE PROPAGATION IN THE SINGLE-CYCLE REGIME , 1997 .