An Evaluation of a Hybrid Language Understanding Approach for Robust Selection of Tutoring Goals

In this paper, we explore the problem of selecting appropriate interventions for students based on an analysis of their interactions with a tutoring system. In the context of the WHY2 conceptual physics tutoring system, we describe CarmelTC, a hybrid symbolic/statistical approach for analysing conceptual physics explanations in order to determine which Knowledge Construction Dialogues (KCDs) students need for the purpose of encouraging them to include important points that are missing. We briefly describe our tutoring approach. We then present a model that demonstrates a general problem with selecting interventions based on an analysis of student performance in circumstances where there is uncertainty with the interpretation, such as with speech or text based natural language input, complex and error prone mathematical or other formal language input, graphical input (i.e., diagrams, etc.), or gestures. In particular, when student performance completeness is high, intervention selection accuracy is more sensitive to analysis accuracy, and increasingly so as performance completeness increases. In light of this model, we have evaluated our CarmelTC approach and have demonstrated that it performs favourably in comparison with the widely used LSA approach, a Naive Bayes approach, and finally a purely symbolic approach.

[1]  Vincent Aleven,et al.  Tutoring Answer Explanation Fosters Learning with Understanding , 1999 .

[2]  Jaime R. Carbonell,et al.  AI in CAI : An artificial intelligence approach to computer-assisted instruction , 1970 .

[3]  Claus Zinn,et al.  A 3-Tier Planning Architecture for Managing Tutorial Dialogue , 2002, Intelligent Tutoring Systems.

[4]  K. VanLehn,et al.  Abductive Theorem Proving for Analyzing Student Explanations , 2003 .

[5]  Dennis W. Moore,et al.  Problem Solving in Geometry: Comparing the effects of non-goal specific instruction and conventional worked examples , 2002 .

[6]  Kurt VanLehn,et al.  Interactive Conceptual Tutoring in Atlas-Andes , 2002 .

[7]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[8]  Neil T. Heffernan,et al.  An Intelligent Tutoring System Incorporating a Model of an Experienced Human Tutor , 2002, Intelligent Tutoring Systems.

[9]  Kurt VanLehn,et al.  Abductive Theorem Proving for Analyzing Student Explanations to Guide Feedback in Intelligent Tutoring Systems , 2004 .

[10]  Reva Freedman Using a Reactive Planner as the Basis for a Dialogue Agent , 2000, FLAIRS Conference.

[11]  Kevin D. Ashley,et al.  Teaching Case-Based Argumentation Concepts Using Dialectic Arguments vs. Didactic Explanations , 2002, Intelligent Tutoring Systems.

[12]  Dorothy L. Gabel,et al.  Handbook of Research on Science Teaching and Learning Project. , 1993 .

[13]  Vincent Aleven,et al.  The Need for Tutorial Dialog to Support Self-Explanation , 2000 .

[14]  Johanna D. Moore,et al.  A comparative evaluation of socratic versus didactic tutoring , 2001 .

[15]  Vincent Aleven,et al.  Pilot-Testing a Tutorial Dialogue System That Supports Self-Explanation , 2002, Intelligent Tutoring Systems.

[16]  Mark G. Core,et al.  Initiative Management for Tutorial Dialogue , 2001 .

[17]  R. Siegler Microgenetic Studies of Self-Explanation , 2002 .

[18]  Silke Schworm,et al.  Learning by Solved Example Problems: Instructional Explanations Reduce Self-Explanation Activity , 2002 .

[19]  Tom M. Mitchell,et al.  Learning to Extract Symbolic Knowledge from the World Wide Web , 1998, AAAI/IAAI.

[20]  Patricia A. Brosnan,et al.  Mathematics Assessment: Practices and Reporting Methods , 1996 .

[21]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[22]  E. Stern,et al.  The Nature of Teachers' Pedagogical Content Beliefs Matters for Students' Achievement Gains: Quasi-Experimental Evidence from Elementary Mathematics. , 2002 .

[23]  InterpretationCarolyn P. Ros A Framework for Robust Semantic Interpretation , 2000 .

[24]  W. Lewis Johnson,et al.  Artificial intelligence in education : AI-ED in the wired and wireless future , 2001 .

[25]  Peter Wiemer-Hastings,et al.  Rules for Syntax, Vectors for Semantics , 2001 .

[26]  Vincent Aleven Pedagogical Content Knowledge in a Tutorial Dialogue System to Support Self-Explanation , 2001 .

[27]  Rob Nadolski,et al.  Cueing for Schema Construction: Designing Problem-Solving Multimedia Practicals , 2002 .

[28]  Peter Wiemer-Hastings,et al.  Adding syntactic information to LSA , 2000 .

[29]  R. Glaser Advances in Instructional Psychology , 1978 .

[30]  J. R. Christie,et al.  Automated Essay Marking for Content ~ does it work? , 2003 .

[31]  Curt Burgess,et al.  Explorations in context space: Words, sentences, discourse , 1998 .

[32]  Kurt VanLehn,et al.  Better Learners Use Analogical Problem Solving Sparingly , 1993, ICML.

[33]  Maria Bannert,et al.  Managing Cognitive Load--Recent Trends in Cognitive Load Theory. Commentary. , 2002 .

[34]  Michelene T. H. Chi,et al.  Eliciting Self-Explanations Improves Understanding , 1994, Cogn. Sci..

[35]  Claus Zinn,et al.  In Proceedings of the NAACL Workshop Adaption in Dialogue Systems , 2001 .

[36]  Margaret E. McIntosh,et al.  Using Learning Logs in Mathematics: Writing To Learn. , 2001 .

[37]  Judy Robertson,et al.  Beyond the Short Answer Question with Research Methods Tutor , 2002, Intelligent Tutoring Systems.

[38]  Martin Chodorow,et al.  Enriching Automated Essay Scoring Using Discourse Marking , 2001 .

[39]  Carolyn Penstein Rosé,et al.  An efficient incremental architecture for robust interpretation , 2002 .

[40]  R. Atkinson,et al.  Transitioning From Studying Examples to Solving Problems: Effects of Self-Explanation Prompts and Fading Worked-Out Steps. , 2003 .

[41]  N. Webb,et al.  Short Circuits or Superconductors? Effects of Group Composition on High-Achieving Students’ Science Assessment Performance , 2002 .

[42]  C. Rosé The Role of Why Questions in Effective Human Tutoring , 2003 .

[43]  Adrienne Y. Lee Using tutoring systems to study learning: An application of HyperCard , 1992 .

[44]  Ellen Riloff,et al.  A Case Study in Using Linguistic Phrases for Text Categorization on the WWW , 1998 .

[45]  Vincent Aleven,et al.  An effective metacognitive strategy: learning by doing and explaining with a computer-based Cognitive Tutor , 2002, Cogn. Sci..

[46]  Pamela W. Jordan Tools for Authoring Tutorial Dialogue Knowledge , 2001 .

[47]  Ralph Grishman,et al.  Comlex Syntax: Building a Computational Lexicon , 1994, COLING.

[48]  B. Bloom The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One Tutoring , 1984 .

[49]  Arthur C. Graesser,et al.  The Foundations and Architecture of Autotutor , 1998, Intelligent Tutoring Systems.

[50]  Carolyn Penstein Rosé,et al.  A Little Goes a Long Way: Quick Authoring of Semantic Knowledge Sources for Interpretation , 2004, HLT-NAACL 2004.

[51]  Ibrahim A. Halloun,et al.  The initial knowledge state of college physics students , 1985 .

[52]  A. Renkl Worked-out examples: instructional explanations support learning by self- explanations , 2002 .

[53]  Peter W. Foltz,et al.  The Measurement of Textual Coherence with Latent Semantic Analysis. , 1998 .

[54]  Robert J. Quinn,et al.  Writing in the Mathematics Classroom: Teacher Beliefs and Practices , 1997 .

[55]  Arthur C. Graesser,et al.  Using Latent Semantic Analysis to Evaluate the Contributions of Students in AutoTutor , 2000, Interact. Learn. Environ..

[56]  Jörg Wittwer,et al.  Can Experts Benefit from Information about a Layperson’s Knowledge for Giving Adaptive Explanations? , 2004 .

[57]  Jaime R. Carbonell,et al.  On Man-Computer Interaction: A Model and Some Related Issues , 1969, IEEE Trans. Syst. Sci. Cybern..

[58]  Michelene T. H. Chi,et al.  Self-Explanations: How Students Study and Use Examples in Learning To Solve Problems. Technical Report No. 9. , 1987 .

[59]  Olaf Köller,et al.  Unterrichtsgestaltung, verständnisvolles Lernen und multiple Zielerreichung im Mathematik- und Physikunterricht der gymnasialen Oberstufe , 2000 .

[60]  John R. Anderson,et al.  Locus of feedback control in computer-based tutoring: impact on learning rate, achievement and attitudes , 2001, CHI.

[61]  Carolyn Penstein Rosé,et al.  A framework for robust semantic interpretation , 2000 .

[62]  Wilfried Bos,et al.  TIMSS/III Dritte Internationale Mathematik- und Naturwissenschaftsstudie — Mathematische und naturwissenschaftliche Bildung am Ende der Schullaufbahn , 2000 .

[63]  Johanna D. Moore,et al.  Robustness versus Fidelity in Natural Language Understanding , 2004 .

[64]  Robert E. Slavin,et al.  Learning to cooperate, cooperating to learn , 1985 .

[65]  Chen-Lin C. Kulik,et al.  Educational Outcomes of Tutoring: A Meta-analysis of Findings , 1982 .

[66]  Carolyn Penstein Rosé,et al.  Spoken Versus Typed Human and Computer Dialogue Tutoring , 2006, Int. J. Artif. Intell. Educ..

[67]  A. Graesser,et al.  Improving an intelligent tutor ’ s comprehension of students with Latent Semantic Analysis ∗ , 1999 .

[68]  R. Atkinson,et al.  Structuring the Transition From Example Study to Problem Solving in Cognitive Skill Acquisition: A Cognitive Load Perspective , 2003 .

[69]  Edward A. Silver,et al.  Gaining Insight into Students' Thinking through Assessment Tasks. , 2000 .

[70]  Vincent Aleven,et al.  A Tutorial Dialog System to Support Self- Explanation: Evaluation and Open Questions , 2003 .

[71]  Kurt VanLehn,et al.  Abductive Theorem Proving for Analyzing Student Explanations to Guide Feedback in Intelligent Tutoring Systems , 2004, Journal of Automated Reasoning.

[72]  Carolyn Penstein Rosé,et al.  BALANCING ROBUSTNESS AND EFFICIENCY IN UNIFICATION-AUGMENTED CONTEXT-FREE PARSERS FOR LARGE PRACTICAL APPLICATIONS , 2001 .

[73]  Carolyn Penstein Rosé,et al.  The Architecture of Why2-Atlas: A Coach for Qualitative Physics Essay Writing , 2002, Intelligent Tutoring Systems.

[74]  John R. Anderson,et al.  Rules of the Mind , 1993 .

[75]  Ellen Riloff,et al.  Automatically Generating Extraction Patterns from Untagged Text , 1996, AAAI/IAAI, Vol. 2.

[76]  M. Kunter,et al.  Constructivist approaches in the secondary school mathematics classroom and their effects on students' learning, interest, and sense of challenge : a re-analysis of the german TIMSS data , 2004 .

[77]  Walter Kintsch,et al.  Predication , 2001, Cogn. Sci..

[78]  Carolyn Penstein Rosé,et al.  Fading and Deepening: The Next Steps for Andes and other Model-Tracing Tutors , 2000, Intelligent Tutoring Systems.

[79]  H. Mandl,et al.  Learning from Worked-Out Examples: The Effects of Example Variability and Elicited Self-Explanations , 1998, Contemporary educational psychology.

[80]  David E. Meltzer,et al.  Differences in Male/Female Response Patterns on Alternative-format Versions of the Force Concept Inventory , 2001 .

[81]  Vincent Aleven,et al.  combatting Shallow Learning in a Tutor for Geometry Problem Solving , 1998, Intelligent Tutoring Systems.

[82]  Michael Glass,et al.  Broadening input understanding in a language-based intelligent tutoring system , 1999 .

[83]  David E. Meltzer,et al.  Transforming the lecture-hall environment: The fully interactive physics lecture , 2002 .

[84]  Allan Collins,et al.  The goal structure of a socratic tutor , 1977, ACM Annual Conference.

[85]  Richard K. Staley,et al.  From Example Study to Problem Solving: Smooth Transitions Help Learning , 2002 .

[86]  R. Hake Interactive-engagement vs Traditional Methods in Mechanics Instruction* , 1998 .

[87]  R. Shillcock,et al.  Proceedings of the Twenty-Third Annual Conference of the Cognitive Science Society , 2001 .

[88]  Kurt VanLehn,et al.  Andes: A Coached Problem Solving Environment for Physics , 2000, Intelligent Tutoring Systems.

[89]  R. Siegler,et al.  How Does Change Occur: A Microgenetic Study of Number Conservation , 1995, Cognitive Psychology.

[90]  Kenneth R. Koedinger,et al.  Recasting the feedback debate: benefits of tutoring error detection and correction skills , 2003 .