Lipschitz regularity for solutions of the parabolic $p$-Laplacian in the Heisenberg group

We prove local Lipschitz regularity for weak solutions to a class of degenerate parabolic PDEs modeled on the parabolic p-Laplacian ∂tu = 2n ∑ i=1 Xi(|∇0u| p−2 Xiu), in a cylinder Ω × R, where Ω is domain in the Heisenberg group H, and 2 ≤ p ≤ 4. The result continues to hold in the more general setting of contact sub-Riemannian manifolds.

[1]  G. Citti,et al.  Conformality and Q-harmonicity in sub-Riemannian manifolds , 2016, Journal de Mathématiques Pures et Appliquées.

[2]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[3]  G. Citti,et al.  Smoothness of Lipschitz-continuous graphs with nonvanishing Levi curvature , 2002 .

[4]  D. Chae,et al.  REGULARITY OF SOLUTIONS TO , 1999 .

[5]  G. Citti,et al.  Regularity for subelliptic PDE through uniform estimates in multi-scale geometries , 2015, 1504.04762.

[6]  Xiao Zhong,et al.  C1,α-regularity for variational problems in the Heisenberg group , 2017, 1711.03284.

[7]  S. Mukherjee On Local Lipschitz Regularity For Quasilinear equations in the Heisenberg Group , 2018, 1804.00751.

[8]  G. Citti,et al.  Regularity for a class of quasilinear degenerate parabolic equations in the Heisenberg group , 2020, 2001.08303.

[9]  G. Citti,et al.  Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian , 2013, 1306.5650.

[10]  D. Ricciotti p-Laplace Equation in the Heisenberg Group , 2015 .

[11]  G. Mingione,et al.  Gradient regularity for elliptic equations in the Heisenberg group , 2007, 0708.3655.

[12]  A. Domokos ON THE REGULARITY OF p-HARMONIC FUNCTIONS IN THE HEISENBERG GROUP , 2004 .

[13]  G. Mingione,et al.  Regularity results for quasilinear elliptic equations in the Heisenberg group , 2007 .

[14]  A. Domokos Differentiability of solutions for the non-degenerate p-Laplacian in the Heisenberg group , 2004 .