Minimum Spanning Trees of Moving Points in the Plane

Consideration is given to the following problem. Preprocess n moving points in a plane, such that the Euclidean minimum spanning tree of these points at a given time t can be reported efficiently. In the result, if the moving points are in k-motion, after an O(kn/sup 4/ log n) time preprocessing step and using O(m) space to store the preprocessing result, the Euclidean minimum spanning tree at t can be reported in O(n) time, where m denotes the number of changes of the Euclidean minimum spanning tree of these points from time t=0 to time t= infinity . >

[1]  Mikhail J. Atallah,et al.  Dynamic computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[2]  Derick Wood,et al.  An Optimal Worst Case Algorithm for Reporting Intersections of Rectangles , 1980, IEEE Transactions on Computers.

[3]  Richard C. T. Lee,et al.  AnO(N logN) minimal spanning tree algorithm forN points in the plane , 1986, BIT Comput. Sci. Sect..

[4]  Franco P. Preparata,et al.  Plane-sweep algorithms for intersecting geometric figures , 1982, CACM.

[5]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[6]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[7]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[8]  Edward M. McCreight,et al.  Priority Search Trees , 1985, SIAM J. Comput..

[9]  Robert E. Tarjan,et al.  Biased Search Trees , 1985, SIAM J. Comput..

[10]  Bernard Chazelle,et al.  Filtering search: A new approach to query-answering , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[11]  M. R. Spiegel Mathematical handbook of formulas and tables , 1968 .