23 Automatic Item Generation and Cognitive Psychology

Publisher Summary This chapter discusses item generation and the role of item response theory (IRT) models that permit cognitive variables to predict item parameters. It presents an overview of the methods of item generation and the research requirements for application. It reviews both the item model approach and the cognitive design system approach to item generation. The item model approach has the advantage of being applicable to item generation relatively quickly as it requires a lesser cognitive foundation. The cognitive design approach has the advantages of explicating construct validity at the item level because the level and the source of cognitive complexity in an item are quantified. The chapter also describes psychometric models that are based on IRT. The models reviewed included the linear logistic test model (LLTM), the 2PL-constrained model, and the hierarchical IRT model. The latter has been shown to produce a broad family of models appropriate for item generation with certain constraints applied. The chapter illustrates some estimation procedures for the psychometric models and presents an example of automatic item generation to spatial ability.

[1]  G. H. Fischer,et al.  The linear logistic test model as an instrument in educational research , 1973 .

[2]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[3]  R. Dillon Handbook on Testing , 1997 .

[4]  Sandip Sinharay,et al.  ANALYSIS OF DATA FROM AN ADMISSIONS TEST WITH ITEM MODELS , 2005 .

[5]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[6]  P. Boeck,et al.  Explanatory item response models : a generalized linear and nonlinear approach , 2004 .

[7]  S. Embretson Test design : developments in psychology and psychometrics , 1985 .

[8]  Wim J. van der Linden,et al.  Computerized Adaptive Testing With Item Cloning , 2003 .

[9]  R. Wolfinger,et al.  Generalized linear mixed models a pseudo-likelihood approach , 1993 .

[10]  D. Bates,et al.  Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model , 1995 .

[11]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[12]  Susan E. Embretson,et al.  Generating items during testing: Psychometric issues and models , 1999 .

[13]  S. Embretson,et al.  Component Latent Trait Models for Test Design. , 1982 .

[14]  Kikumi K. Tatsuoka,et al.  A Probabilistic Model for Diagnosing Misconceptions By The Pattern Classification Approach , 1985 .

[15]  Edith Aurora Graf,et al.  MODEL ANALYSIS AND MODEL CREATION: CAPTURING THE TASK‐MODEL STRUCTURE OF QUANTITATIVE ITEM DOMAINS , 2006 .

[16]  Erling B. Andersen,et al.  The Numerical Solution of a Set of Conditional Estimation Equations , 1972 .

[17]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[18]  Isaac I. Bejar,et al.  A FEASIBILITY STUDY OF ON‐THE‐FLY ITEM GENERATION IN ADAPTIVE TESTING , 2002 .

[19]  S. Embretson A cognitive design system approach to generating valid tests : Application to abstract reasoning , 1998 .

[20]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[21]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[22]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[23]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[24]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[25]  Joanna S. Gorin,et al.  Improving Construct Validity with Cognitive Psychology Principles. , 2001 .

[26]  E. Maris Psychometric latent response models , 1995 .

[27]  Patrick C. Kyllonen,et al.  Reasoning ability is (little more than) working-memory capacity?! , 1990 .

[28]  Geert Molenberghs,et al.  Estimation and software , 2004 .

[29]  S. Embretson A general latent trait model for response processes , 1984 .

[30]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[31]  Randy Elliot Bennett,et al.  Validity and Automad Scoring: It's Not Only the Scoring , 1998 .

[32]  Susan E. Embretson Measuring Human Intelligence with Artificial Intelligence , 2004 .

[33]  E. B. Andersen,et al.  Asymptotic Properties of Conditional Maximum‐Likelihood Estimators , 1970 .

[34]  Christopher Hertzog,et al.  Metacognition and Intelligence , 2005 .

[35]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[36]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[37]  R. Hambleton,et al.  Handbook of Modern Item Response Theory , 1997 .

[38]  Randy Elliot Bennett,et al.  Item generation and beyond: Applications of schema theory to mathematics assessment. , 2002 .

[39]  Robert J. Mislevy,et al.  How to Equate Tests With Little or No Data , 1993 .