Large-Scale Distributed Locality-Sensitive Hashing for General Metric Data
暂无分享,去创建一个
Eduardo Valle | George Teodoro | Eliezer S. Silva | Thiago S. F. X. Teixeira | George Teodoro | Eduardo Valle | Thiago Teixeira
[1] David Novak,et al. Metric Index: An Efficient and Scalable Solution for Similarity Search , 2009, 2009 Second International Workshop on Similarity Search and Applications.
[2] Olivier Buisson,et al. A posteriori multi-probe locality sensitive hashing , 2008, ACM Multimedia.
[3] Edgar Chávez,et al. On locality sensitive hashing in metric spaces , 2010, SISAP.
[4] Ali S. Hadi,et al. Finding Groups in Data: An Introduction to Chster Analysis , 1991 .
[5] Pavel Zezula,et al. Similarity Search - The Metric Space Approach , 2005, Advances in Database Systems.
[6] Zhe Wang,et al. Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search , 2007, VLDB.
[7] Ricardo da Silva Torres,et al. MONORAIL: A Disk-Friendly Index for Huge Descriptor Databases , 2010, 2010 20th International Conference on Pattern Recognition.
[8] Gonzalo Navarro,et al. Metric Spaces Library , 2008 .
[9] Piotr Indyk,et al. Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.
[10] Ricardo A. Baeza-Yates,et al. Searching in metric spaces , 2001, CSUR.
[11] Matthijs Douze,et al. Searching in one billion vectors: Re-rank with source coding , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[12] Piotr Indyk,et al. Approximate Nearest Neighbor: Towards Removing the Curse of Dimensionality , 2012, Theory Comput..
[13] David Novak,et al. On locality-sensitive indexing in generic metric spaces , 2010, SISAP.
[14] Nicole Immorlica,et al. Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.
[15] Peter J. Rousseeuw,et al. Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .
[16] Piotr Indyk,et al. Similarity Search in High Dimensions via Hashing , 1999, VLDB.
[17] Caetano Traina,et al. Using Pivots to Speed-Up k-Medoids Clustering , 2011, J. Inf. Data Manag..
[18] Hae-Sang Park,et al. A simple and fast algorithm for K-medoids clustering , 2009, Expert Syst. Appl..
[19] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[20] Laurent Amsaleg,et al. Locality sensitive hashing: A comparison of hash function types and querying mechanisms , 2010, Pattern Recognit. Lett..
[21] Byungkon Kang. Robust and Efficient Locality Sensitive Hashing for Nearest Neighbor Search in Large Data Sets , 2012 .