Effects of Cerium Oxide Nanoparticles on PC12 Neuronal-Like Cells: Proliferation, Differentiation, and Dopamine Secretion

[1]  A. Menciassi,et al.  PC12 neuron‐like cell response to electrospun poly( 3‐hydroxybutyrate) substrates , 2015, Journal of tissue engineering and regenerative medicine.

[2]  B. Mazzolai,et al.  Effects of Cerium Oxide Nanoparticles on PC12 Neuronal-Like Cells: Proliferation, Differentiation, and Dopamine Secretion , 2013, Pharmaceutical Research.

[3]  Sudipta Seal,et al.  Bio‐distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice , 2013, Environmental toxicology.

[4]  R. Aparna,et al.  Cerium Oxide Nanoparticles Promotes Wound Healing Activity in In-Vivo Animal Model , 2012 .

[5]  Amit Kumar,et al.  The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. , 2012, Biomaterials.

[6]  R. Amal,et al.  Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937. , 2012, Biomaterials.

[7]  J. Perez,et al.  Nanoceria facilitates the synthesis of poly(o-phenylenediamine) with pH-tunable morphology, conductivity, and photoluminescent properties. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[8]  Soumen Das,et al.  Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. , 2012, Acta biomaterialia.

[9]  J. Zink,et al.  Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. , 2012, ACS nano.

[10]  Silvia Licoccia,et al.  Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. , 2012, ACS nano.

[11]  D. Butterfield,et al.  Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. , 2012, Toxicology and applied pharmacology.

[12]  P. Sestili,et al.  Reactive Oxygen Species in Skeletal Muscle Signaling , 2011, Journal of signal transduction.

[13]  S. Andreescu,et al.  Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. , 2011, Free radical biology & medicine.

[14]  P. Kolattukudy,et al.  Cerium Oxide Nanoparticles Inhibits Oxidative Stress and Nuclear Factor-κB Activation in H9c2 Cardiomyocytes Exposed to Cigarette Smoke Extract , 2011, Journal of Pharmacology and Experimental Therapeutics.

[15]  E. Traversa,et al.  Ce³+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. , 2011, ACS nano.

[16]  S. Seal,et al.  Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways , 2011, Neurobiology of Disease.

[17]  E. Traversa,et al.  Pharmacological potential of cerium oxide nanoparticles. , 2011, Nanoscale.

[18]  S. Seal,et al.  Nanoceria Inhibit the Development and Promote the Regression of Pathologic Retinal Neovascularization in the Vldlr Knockout Mouse , 2011, PloS one.

[19]  E. Traversa,et al.  Cerium oxide nanoparticles: a promise for applications in therapy. , 2011, Journal of experimental therapeutics & oncology.

[20]  J. Erlichman,et al.  Cerium Oxide Nanoparticles for the Treatment of Neurological Oxidative Stress Diseases , 2011 .

[21]  B. Aggarwal,et al.  Oxidative stress, inflammation, and cancer: how are they linked? , 2010, Free radical biology & medicine.

[22]  Charalambos Kaittanis,et al.  Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. , 2010, ACS nano.

[23]  S. Seal,et al.  Nanoceria exhibit redox state-dependent catalase mimetic activity. , 2010, Chemical communications.

[24]  M. Shoichet,et al.  Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins. , 2009, Journal of biomedical materials research. Part A.

[25]  Liping Tang,et al.  Nanomaterial cytotoxicity is composition, size, and cell type dependent , 2010, Particle and Fibre Toxicology.

[26]  Saber M Hussain,et al.  Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. , 2009, Neurotoxicology.

[27]  Paolo Zamboni,et al.  Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options , 2009, Current neuropharmacology.

[28]  J. Kreuter,et al.  Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[29]  Sudipta Seal,et al.  The role of cerium redox state in the SOD mimetic activity of nanoceria. , 2008, Biomaterials.

[30]  E. Traversa,et al.  Design of Electroceramics for Solid Oxides Fuel Cell Applications: Playing with Ceria , 2008 .

[31]  G. Lazzeri,et al.  Fine ultrastructure and biochemistry of PC12 cells: A comparative approach to understand neurotoxicity , 2007, Brain Research.

[32]  Hannah J. Zhang,et al.  An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. , 2007, American journal of physiology. Regulatory, integrative and comparative physiology.

[33]  S. Seal,et al.  Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides , 2006, Nature nanotechnology.

[34]  P. Maher Redox control of neural function: background, mechanisms, and significance. , 2006, Antioxidants & redox signaling.

[35]  H. Bartsch,et al.  Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair , 2006, Langenbeck's Archives of Surgery.

[36]  David Schubert,et al.  Cerium and yttrium oxide nanoparticles are neuroprotective. , 2006, Biochemical and biophysical research communications.

[37]  Richey M. Davis,et al.  Radical nanomedicine. , 2006, Nanomedicine.

[38]  Armel Le Bail,et al.  Whole powder pattern decomposition methods and applications: A retrospection , 2005, Powder Diffraction.

[39]  Chung-Liang Ho,et al.  Overexpression of neuronal intermediate filament protein α‐internexin in PC12 cells , 2005 .

[40]  M. Mirault,et al.  Emerging roles of thioredoxin cycle enzymes in the central nervous system , 2005, Cellular and Molecular Life Sciences CMLS.

[41]  H. Chun,et al.  Oxidative stress regulated genes in nigral dopaminergic neuronal cells: correlation with the known pathology in Parkinson's disease. , 2003, Brain research. Molecular brain research.

[42]  吉田 秀行 Stereotactic transplantation of a dopamine-producing capsule into the striatum for treatment of parkinson disease : A preclinical primate study , 2003 .

[43]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[44]  P. Borm,et al.  Cell and tissue responses to oxidative damage. , 1993, Laboratory investigation; a journal of technical methods and pathology.

[45]  M. Romeo,et al.  XPS Study of the reduction of cerium dioxide , 1993 .

[46]  L. Greene,et al.  Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. , 1976, Proceedings of the National Academy of Sciences of the United States of America.