A modified greedy analysis pursuit algorithm for the cosparse analysis model

In the past decade, the sparse representation synthesis model has been deeply researched and widely applied in signal processing. Recently, a cosparse analysis model has been introduced as an interesting alternative to the sparse representation synthesis model. The sparse synthesis model pay attention to non-zero elements in a representation vector x, while the cosparse analysis model focuses on zero elements in the analysis representation vector Ωx. This paper mainly considers the problem of the cosparse analysis model. Based on the greedy analysis pursuit algorithm, by constructing an adaptive weighted matrix Wk−1, we propose a modified greedy analysis pursuit algorithm for the sparse recovery problem when the signal obeys the cosparse model. Using a weighted matrix, we fill the gap between greedy algorithm and relaxation techniques. The standard analysis shows that our algorithm is convergent. We estimate the error bound for solving the cosparse analysis model, and then the presented simulations demonstrate the advantage of the proposed method for the cosparse inverse problem.

[1]  M. Davies,et al.  Greedy-like algorithms for the cosparse analysis model , 2012, 1207.2456.

[2]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[3]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[4]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[5]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[6]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[7]  Mário A. T. Figueiredo,et al.  Signal restoration with overcomplete wavelet transforms: comparison of analysis and synthesis priors , 2009, Optical Engineering + Applications.

[8]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[9]  Zongben Xu,et al.  L1/2 regularization , 2010, Science China Information Sciences.

[10]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[11]  Yue M. Lu,et al.  Sampling Signals from a Union of Subspaces , 2008, IEEE Signal Processing Magazine.

[12]  Mohamed-Jalal Fadili,et al.  Robust Sparse Analysis Regularization , 2011, IEEE Transactions on Information Theory.

[13]  Wang Yao,et al.  L 1/2 regularization , 2010 .

[14]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[15]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[16]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[17]  Wenbo Li,et al.  The reweighed greedy analysis pursuit algorithm for the cosparse analysis model , 2015, 2015 11th International Conference on Natural Computation (ICNC).

[18]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[19]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[20]  Michael Elad,et al.  Cosparse analysis modeling - uniqueness and algorithms , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[21]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Minh N. Do,et al.  A Theory for Sampling Signals from a Union of Subspaces , 2022 .

[23]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[24]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[25]  Rémi Gribonval,et al.  Sparse Representations in Audio and Music: From Coding to Source Separation , 2010, Proceedings of the IEEE.

[26]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[27]  Kjersti Engan,et al.  Recursive Least Squares Dictionary Learning Algorithm , 2010, IEEE Transactions on Signal Processing.

[28]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[29]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[30]  Yonina C. Eldar,et al.  Coherence-Based Performance Guarantees for Estimating a Sparse Vector Under Random Noise , 2009, IEEE Transactions on Signal Processing.

[31]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[32]  Rayan Saab,et al.  Stable sparse approximations via nonconvex optimization , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[33]  Zongben Xu,et al.  Representative of L1/2 Regularization among Lq (0 < q ≤ 1) Regularizations: an Experimental Study Based on Phase Diagram , 2012 .

[34]  Kjersti Engan,et al.  Multi-frame compression: theory and design , 2000, Signal Process..

[35]  Michael Elad,et al.  Performance Guarantees of the Thresholding Algorithm for the Cosparse Analysis Model , 2013, IEEE Transactions on Information Theory.

[36]  Michael B. Wakin Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Starck, J.-L., et al; 2010) [Book Reviews] , 2011, IEEE Signal Processing Magazine.

[37]  J. Tropp JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .

[38]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[39]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[40]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[41]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006 .

[42]  Stephen P. Boyd,et al.  Disciplined Convex Programming , 2006 .

[43]  Mike E. Davies,et al.  Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces , 2009, IEEE Transactions on Information Theory.

[44]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[45]  Javier Portilla,et al.  Image restoration through l0 analysis-based sparse optimization in tight frames , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[46]  R. Chartrand,et al.  Restricted isometry properties and nonconvex compressive sensing , 2007 .

[47]  Pierre Vandergheynst,et al.  Blind Audiovisual Source Separation Based on Sparse Redundant Representations , 2010, IEEE Transactions on Multimedia.

[48]  S. Mallat A wavelet tour of signal processing , 1998 .

[49]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[50]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.