A novel gene’s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior–posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos

[1]  Zheng Wei,et al.  An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo , 2016, Development.

[2]  Arndt von Haeseler,et al.  W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis , 2016, Nucleic Acids Res..

[3]  R. Burke,et al.  Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms , 2016, Development.

[4]  R. Anadón,et al.  Neuronal organization of the brain in the adult amphioxus (Branchiostoma lanceolatum): A study with acetylated tubulin immunohistochemistry , 2015, The Journal of comparative neurology.

[5]  V. Hinman,et al.  Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks , 2015, EvoDevo.

[6]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[7]  F. Cavodeassi Integration of anterior neural plate patterning and morphogenesis by the Wnt signaling pathway , 2014, Developmental neurobiology.

[8]  R. Range Specification and positioning of the anterior neuroectoderm in deuterostome embryos , 2014, Genesis.

[9]  Jenifer C. Croce,et al.  A comprehensive survey of wnt and frizzled expression in the sea urchin Paracentrotus lividus , 2014, Genesis.

[10]  R. Burke,et al.  Sea urchin neural development and the metazoan paradigm of neurogenesis , 2014, Genesis.

[11]  D. Tautz,et al.  Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution , 2013, BMC Genomics.

[12]  Minh Anh Nguyen,et al.  Ultrafast Approximation for Phylogenetic Bootstrap , 2013, Molecular biology and evolution.

[13]  R. Angerer,et al.  Integration of Canonical and Noncanonical Wnt Signaling Pathways Patterns the Neuroectoderm Along the Anterior–Posterior Axis of Sea Urchin Embryos , 2013, PLoS biology.

[14]  N. Grishin,et al.  Cysteine‐rich domains related to Frizzled receptors and Hedgehog‐interacting proteins , 2012, Protein science : a publication of the Protein Society.

[15]  E. Grove,et al.  Ancient deuterostome origins of vertebrate brain signalling centres , 2012, Nature.

[16]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[17]  R. Angerer,et al.  Sequential Signaling Crosstalk Regulates Endomesoderm Segregation in Sea Urchin Embryos , 2012, Science.

[18]  Gregor Bucher,et al.  Candidate Gene Screen in the Red Flour Beetle Tribolium Reveals Six3 as Ancient Regulator of Anterior Median Head and Central Complex Development , 2011, PLoS genetics.

[19]  B. Thisse,et al.  Identification and mechanism of regulation of the zebrafish dorsal determinant , 2011, Proceedings of the National Academy of Sciences.

[20]  J. Gerhart,et al.  β-Catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii , 2011, Development.

[21]  R. P. Kostyuchenko,et al.  Six3 demarcates the anterior-most developing brain region in bilaterian animals , 2010, EvoDevo.

[22]  M. Martindale,et al.  β-catenin and early development in the gastropod, Crepidula fornicata. , 2010, Integrative and comparative biology.

[23]  M. Martindale,et al.  Welcome to open access publishing at EvoDevo: a macroevolutionary change in sharing data , 2010, EvoDevo.

[24]  D. Hayward,et al.  New tricks with old genes: the genetic bases of novel cnidarian traits. , 2010, Trends in genetics : TIG.

[25]  Christof Niehrs,et al.  On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes , 2010, Development.

[26]  Peter W. Reddien,et al.  Wnt Signaling and the Polarity of the Primary Body Axis , 2009, Cell.

[27]  T. Bosch,et al.  More than just orphans: are taxonomically-restricted genes important in evolution? , 2009, Trends in genetics : TIG.

[28]  Y. Minami,et al.  Ror‐family receptor tyrosine kinases in noncanonical Wnt signaling: Their implications in developmental morphogenesis and human diseases , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[29]  S. Yaguchi,et al.  The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center , 2009, Development.

[30]  R. T. Ballock,et al.  Carboxypeptidase Z (CPZ) Links Thyroid Hormone and Wnt Signaling Pathways in Growth Plate Chondrocytes , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[31]  Romain Derelle,et al.  A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica , 2008, Development.

[32]  M. Martindale,et al.  Beta-catenin is required for the establishment of vegetal embryonic fates in the nemertean, Cerebratulus lacteus. , 2008, Developmental biology.

[33]  E. Cisneros,et al.  Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease , 2008, Journal of Cell Science.

[34]  B. Degnan,et al.  Wnt and TGF-β Expression in the Sponge Amphimedon queenslandica and the Origin of Metazoan Embryonic Patterning , 2007, PloS one.

[35]  V. Beneš,et al.  Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. , 2007, Developmental biology.

[36]  S. Carroll,et al.  Emerging principles of regulatory evolution , 2007, Proceedings of the National Academy of Sciences.

[37]  C. Niehrs,et al.  Function and biological roles of the Dickkopf family of Wnt modulators , 2006, Oncogene.

[38]  D. McClay,et al.  A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus. , 2006, Developmental biology.

[39]  Andrew R. Jackson,et al.  The Genome of the Sea Urchin Strongylocentrotus purpuratus , 2006, Science.

[40]  David Q. Matus,et al.  A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. , 2006, Seminars in cell & developmental biology.

[41]  S. Teichmann,et al.  The relationship between domain duplication and recombination. , 2005, Journal of molecular biology.

[42]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[43]  M. Martindale,et al.  An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation , 2003, Nature.

[44]  Nobuyuki Onishi,et al.  The receptor tyrosine kinase Ror2 is involved in non‐canonical Wnt5a/JNK signalling pathway , 2003, Genes to cells : devoted to molecular & cellular mechanisms.

[45]  L. Puelles,et al.  Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. , 2003, Genes & development.

[46]  C. Ettensohn,et al.  Cloning and developmental expression of a novel, secreted frizzled-related protein from the sea urchin, Strongylocentrotus purpuratus , 2002, Mechanisms of Development.

[47]  J. M. Chong,et al.  Disulfide Bond Assignments of Secreted Frizzled-related Protein-1 Provide Insights about Frizzled Homology and Netrin Modules* , 2002, The Journal of Biological Chemistry.

[48]  C. Niehrs,et al.  A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. , 2001, Development.

[49]  T. Pramila,et al.  Interaction of Frizzled Related Protein (FRP) with Wnt Ligands and the Frizzled Receptor Suggests Alternative Mechanisms for FRP Inhibition of Wnt Signaling* , 1999, The Journal of Biological Chemistry.

[50]  D. McClay,et al.  Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. , 1999, Development.

[51]  F. Luyten,et al.  Frzb, a Secreted Protein Expressed in the Spemann Organizer, Binds and Inhibits Wnt-8 , 1997, Cell.

[52]  T. Bouwmeester,et al.  Frzb-1 Is a Secreted Antagonist of Wnt Signaling Expressed in the Spemann Organizer , 1997, Cell.

[53]  R. Britten,et al.  SpZ12-1, a negative regulator required for spatial control of the territory-specific CyIIIa gene in the sea urchin embryo. , 1995, Development.

[54]  Isabelle S. Peter,et al.  Implications of Developmental Gene Regulatory Networks Inside and Outside Developmental Biology. , 2016, Current topics in developmental biology.

[55]  Zhaowu Ma,et al.  The evolutionary analysis reveals domain fusion of proteins with Frizzled-like CRD domain. , 2014, Gene.

[56]  S. Yaguchi,et al.  A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. , 2008, Developmental cell.

[57]  T. Jessell,et al.  Progressive induction of caudal neural character by graded Wnt signaling , 2002, Nature Neuroscience.

[58]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[59]  D. McClay,et al.  Nuclear β -catenin is required to specify vegetal cell fates in the sea urchin embryo , 1998 .