Spectral sensitivities of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau
暂无分享,去创建一个
[1] S. Laughlin. Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .
[2] Alireza Moini. Spatio-Temporal Image Processing Vision Chips , 2000 .
[3] Roger C. Hardie,et al. The photoreceptor array of the dipteran retina , 1986, Trends in Neurosciences.
[4] S. Laughlin,et al. The structures of dorsal and ventral regions of a dragonfly retina , 1978, Cell and Tissue Research.
[5] R. Menzel,et al. The identification of spectral receptor types in the retina and lamina of the dragonflySympetrum rubicundulum , 1983, Journal of comparative physiology.
[6] S B Laughlin,et al. Synaptic limitations to contrast coding in the retina of the blowfly Calliphora , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[7] T. Matić. Electrical inhibition in the retina of the butterflyPapilio , 1983, Journal of comparative physiology.
[8] W. J. Bell,et al. Comprehensive Insect Physiology, Biochemistry and Pharmacology , 1985 .
[9] G. Horridge. The Compound eye and vision of insects , 1975 .
[10] Simon B. Laughlin,et al. Receptor Function in the Apposition Eye — An Electrophysiological Approach , 1975 .
[11] S. Shaw. Early visual processing in insects. , 1984, The Journal of experimental biology.
[12] R. Menzel,et al. Chromatic properties of interneurons in the optic lobes of the bee , 2004, Journal of comparative physiology.
[13] E. Eguchi. Fine structure and spectral sensitivities of retinular cells in the dorsal sector of compound eyes in the dragonfly Aeschna , 1971, Zeitschrift für vergleichende Physiologie.
[14] I. Meinertzhagen,et al. The lamina monopolar cells in the optic lobe of the dragonfly sympetrum , 1982 .
[15] C. Neumeyer,et al. Tetrachromatic color vision in the goldfish becomes trichromatic under white adaptation light of moderate intensity , 1989, Vision Research.
[16] Roger C. Hardie,et al. Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.
[17] H. A. VAN DER VELDEN,et al. The number of quanta necessary for the perception of light of the human eye. , 1946, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.
[18] Daniel Osorio,et al. Mechanisms for Neural Signal Enhancement in the Blowfly Compound Eye , 1989 .
[19] G. Horridge. Unit studies on the retina of dragonflies , 1969, Zeitschrift für vergleichende Physiologie.
[20] R. Menzel,et al. Chromatic properties of interneurons in the optic lobes of the bee , 1977, Journal of comparative physiology.
[21] R. Menzel,et al. Achromatic vision in the honeybee at low light intensities , 1981, Journal of comparative physiology.
[22] S. R. Shaw,et al. Retinal resistance barriers and electrical lateral inhibition , 1975, Nature.
[23] H. Autrum,et al. Spektrale Empfindlichkeit einzelner Sehzellen der Aeschniden , 1968, Zeitschrift für vergleichende Physiologie.
[24] Christa Neumeyer,et al. On spectral sensitivity in the goldfish Evidence for neural interactions between different “cone mechanisms” , 1984, Vision Research.
[25] R. Menzel. Spectral sensitivity of monopolar cells in the bee lamina , 1974, Journal of comparative physiology.
[26] H. Velden,et al. The number of quanta necessary for the perception of light of the human eye. , 1946 .
[27] Colour Inputs to Motion and Object Vision in an Insect , 1990 .
[28] S. Laughlin. Neural integration in the first optic neuropile of dragonflies , 2004, Journal of comparative physiology.
[29] Christian Kleinewächter,et al. On identification , 2005, Electron. Notes Discret. Math..