Miniature Schwarzschild objective as a micro-optical component free of main aberrations: concept, design, and first realization with silicon-glass micromachining.

This paper presents the conception of a new micro-optical component fabricated within the wafer-level approach: a micromachined reflective objective, the so-called micro-Schwarzschild objective, characterized by superior optical performances than widespread microlenses. The system, made of two vertically integrated mirrors, works in transmission similarly as microlenses. While the specific geometric configuration of the two-mirrors allows elimination of most common optical aberrations, the reflective architecture provides inherent achromaticity. This paper presents in detail the optical design and analyzes fabrication tolerances. It also describes a fabrication flow chart based on silicon micromachining done at the wafer level that could allow production of thousands of such micro-optical devices within a single fabrication run. The realized prototype employs the two-step KOH etching process to generate the micromirror pairs followed by glass reflow for the secondary mirror generation and selective metallic deposition. Despite an insufficient mirror quality attributed to this specific silicon etching technique and highlighted by the reflective configuration, the objective fabrication in terms of alignment, bonding, and coating is shown as feasible.

[1]  Toralf Scharf,et al.  On the chromatic aberration of microlenses. , 2006, Optics express.

[2]  Feng Chen,et al.  Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching. , 2014, Optics express.

[3]  C. G. Wynne Two-Mirror Anastigmats , 1969 .

[4]  W. Jang,et al.  Electrowetting Lens Employing Hemispherical Cavity Formed by Hydrofluoric Acid, Nitric Acid, and Acetic Acid Etching of Silicon , 2012 .

[5]  Xinyu Liu,et al.  Depth extension and sidelobe suppression in optical coherence tomography using pupil filters. , 2014, Optics express.

[6]  Sylwester Bargiel,et al.  Micromachined array-type Mirau interferometer for parallel inspection of MEMS , 2011 .

[7]  M. J. Riedl Optical Design Fundamentals for Infrared Systems , 1995 .

[8]  R. Haskell,et al.  OPTICS; ATOMS and MOLECULES; SPECTROSCOPY 1613 Resolution limits for infrared microspectroscopy explored with synchrotron radiation , 2001 .

[9]  C. Gorecki,et al.  A Numerical Model of Wet Isotropic Etching of Silicon Molds for Microlenses Fabrication , 2011 .

[10]  Reinhard Voelkel,et al.  Wafer-scale micro-optics fabrication , 2012 .

[12]  Hong Xia,et al.  100% Fill-Factor Aspheric Microlens Arrays (AMLA) With Sub-20-nm Precision , 2009, IEEE Photonics Technology Letters.

[13]  W. Wetherell,et al.  General analysis of aplanatic cassegrain, gregorian, and schwarzschild telescopes. , 1972, Applied optics.

[14]  Alfred Lechner,et al.  Isotropic wet chemical etching of deep channels with optical surface quality in silicon with HNA based etching solutions , 2013 .

[15]  Yung-Chun Lee,et al.  Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method. , 2012, Optics express.

[16]  R. Willstrop Exact optics — III. Schwarzschild's spectrograph camera revised , 2004 .

[17]  Thomas G. Digges,et al.  Micromirror arrays using KOH:H2O micromachining of silicon for lens templates, geodesic lenses, and other applications , 1994 .

[18]  C. Pai,et al.  Multiscale optics for enhanced light collection from a point source. , 2010, Optics letters.

[19]  J. Miao,et al.  On the wet etching of Pyrex glass , 2008 .

[20]  Ole Hansen,et al.  Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication , 2005 .

[21]  Hugo Thienpont,et al.  Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques. , 2009, Optics express.

[22]  Pin Long,et al.  General aspheric refractive micro‐optics fabricated by optical lithography using a high energy beam sensitive glass gray‐level mask , 1996 .

[23]  Reinhard Voelkel,et al.  High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques , 2012, Optical Systems Design.

[24]  A. Bosseboeuf,et al.  Deep Wet Etching in Hydrofluoric Acid, Nitric Acid, and Acetic Acid of Cavities in a Silicon Wafer , 2013 .

[25]  M. Kraft,et al.  ICP polishing of silicon for high-quality optical resonators on a chip , 2012, 1208.5647.

[26]  Chemically etched micromirrors in silicon , 1988 .

[27]  M. Hutley,et al.  The manufacture of microlenses by melting photoresist , 1990 .

[28]  Tomohiko Sasano,et al.  Diffractive-Refractive Achromatic Lens for Optical Disk System by Glass Molding , 1998 .

[29]  A KoellenspergerP,et al.  王水による化学ウェットエッチングによる白金(Pt)薄膜のパターン形成 , 2012 .

[30]  Hk Hendrik Kuiken,et al.  A mathematical model for wet-chemical diffusion-controlled mask etching through a circular hole , 2003 .

[31]  Sylwester Bargiel,et al.  Simple setup for optical characterization of microlenses , 2014, Optics & Photonics - Optical Engineering + Applications.

[32]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[33]  Sylwester Bargiel,et al.  A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement. , 2014, Optics express.

[34]  J. Berenschot,et al.  Precise Test of the Diffusion-Controlled Wet Isotropic Etching of Silicon via Circular Mask Openings , 2006 .

[35]  C. Burch,et al.  Reflecting Microscopes , 1943, Nature.

[36]  Tino Benkenstein,et al.  Schwarzschild-objective-based EUV micro-exposure tool , 2006, SPIE Advanced Lithography.

[37]  J. E. Harvey,et al.  Performance predictions of a Schwarzschild imaging microscope for soft x-ray applications , 1996 .