A size resolved investigation of large water clusters.

Size selected water clusters are generated by photoionizing sodium doped clusters close to the ionization threshold. This procedure is free of fragmentation. Upon infrared excitation, size- and isomer-specific OH-stretch spectra are obtained over a large range of cluster sizes. In one application of this method the infrared spectra of single water cluster sizes are investigated. A comparison with calculations, based on structures optimized by genetic algorithms, has been made to tentatively derive cluster structures which reproduce the experimental spectra. We identified a single all-surface structure for n = 25 and mixtures with one or two interior molecules for n = 24 and 32. In another application the sizes are determined at which the crystallization sets in. Surprisingly, this process strongly depends on the cluster temperature. The crystallization starts at sizes below n = 200 at higher temperatures and the onset is shifted to sizes above n = 400 at lower temperatures.

[1]  S. Xantheas,et al.  The spectroscopic signature of the "all-surface" to "internally solvated" structural transition in water clusters in the n = 17-21 size regime. , 2005, The Journal of chemical physics.

[2]  Bernd Hartke,et al.  Size-dependent transition from all-surface to interior-molecule structures in pure neutral water clusters , 2003 .

[3]  Michael Zeifman,et al.  Nonequilibrium numerical model of homogeneous condensation in argon and water vapor expansions. , 2010, The Journal of chemical physics.

[4]  J. Skinner,et al.  Vibrational spectroscopy of HOD in liquid D2O. III. Spectral diffusion, and hydrogen-bonding and rotational dynamics , 2003 .

[5]  Berry,et al.  Freezing, melting, spinodals, and clusters. , 1989, Physical review letters.

[6]  P. Slavíček,et al.  Communications: Observation of two classes of isomers of hydrated electrons in sodium-water clusters. , 2010, The Journal of chemical physics.

[7]  Johannes M. Dieterich,et al.  Empirical review of standard benchmark functions using evolutionary global optimization , 2012, ArXiv.

[8]  T. Ebata,et al.  Size‐selected vibrational spectra of phenol‐(H2O)n (n=1–4) clusters observed by IR–UV double resonance and stimulated Raman‐UV double resonance spectroscopies , 1996 .

[9]  Bernd Hartke,et al.  Structural transitions in clusters. , 2002, Angewandte Chemie.

[10]  J. Skinner,et al.  The water hexamer: three-body interactions, structures, energetics, and OH-stretch spectroscopy at finite temperature. , 2012, The Journal of chemical physics.

[11]  L. Ojamäe,et al.  Computational studies of the stability of the (H2O)100 nanodrop , 2010 .

[12]  U. Buck,et al.  Strong fragmentation of large rare gas clusters by high energy electron impact , 2002 .

[13]  J. C. Schön,et al.  Studying the energy hypersurface of continuous systems - the threshold algorithm , 1996 .

[14]  E. Tosatti,et al.  Proton order in the ice crystal surface , 2008, Proceedings of the National Academy of Sciences.

[15]  L. Bartell,et al.  Kinetics of Homogeneous Nucleation in the Freezing of Large Water Clusters , 1995 .

[16]  V. Molinero,et al.  Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures. , 2012, Journal of the American Chemical Society.

[17]  M. Kulmala How Particles Nucleate and Grow , 2003, Science.

[18]  Bernd Hartke,et al.  Larger water clusters with edges and corners on their way to ice: structural trends elucidated with an improved parallel evolutionary algorithm. , 2006, The journal of physical chemistry. A.

[19]  Peter Salamon,et al.  Emergent Hierarchical Structures in Complex-System Dynamics. , 1993 .

[20]  C. Hock,et al.  Calorimetric observation of the melting of free water nanoparticles at cryogenic temperatures. , 2009, Physical review letters.

[21]  Sotiris S Xantheas,et al.  Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. , 2008, The Journal of chemical physics.

[22]  Valeria Molinero,et al.  Water modeled as an intermediate element between carbon and silicon. , 2009, The journal of physical chemistry. B.

[23]  P. Slavíček,et al.  A Fully Size-Resolved Perspective on the Crystallization of Water Clusters , 2012, Science.

[24]  J. Doye,et al.  Evolution of the Potential Energy Surface with Size for Lennard-Jones Clusters , 1999, cond-mat/9903305.

[25]  U. Buck,et al.  Structure and Spectra of Three-Dimensional ( H 2 O ) n Clusters, n = 8 , 9 , 10 , 1998 .

[26]  Li Wang,et al.  Corrigendum: Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference , 2013, Nature Communications.

[27]  R. Saykally,et al.  Water Clusters , 1996, Science.

[28]  L. Delzeit,et al.  A characterization of crystalline ice nanoclusters using transmission electron microscopy , 2001 .

[29]  U. Buck,et al.  Theoretical Study of Structure and Spectra of Cage Clusters (H2O)n,n= 7-10 , 1999 .

[30]  K. Jordan,et al.  Infrared Spectrum of a Molecular Ice Cube: The S4 and D2d Water Octamers in Benzene-(Water)8 , 1997 .

[31]  Johannes M. Dieterich,et al.  Composition‐induced structural transitions in mixed Lennard‐Jones clusters: Global reparametrization and optimization , 2011, J. Comput. Chem..

[32]  David J. Wales,et al.  Global minima of water clusters (H2O)n, n≤21, described by an empirical potential , 1998 .

[33]  A. Fujii,et al.  Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters , 2013 .

[34]  Brooks H. Pate,et al.  Structures of Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy , 2012, Science.

[35]  D. Tobias,et al.  Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols , 2000, Science.

[36]  K. Kleinermanns,et al.  Double resonance spectroscopy of phenol(H2O)1–12: evidence for ice-like structures in aromate–water clusters? , 1998 .

[37]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[38]  Bernd Hartke,et al.  Global optimization , 2011 .

[39]  J. Farges,et al.  Structure of solid water clusters formed in a free jet expansion , 1983 .

[40]  Nitsch,et al.  Photoionization of Na(NH3)n and Na(H2O)n clusters: A step towards the liquid phase? , 1991, Physical review letters.

[41]  P. Slavíček,et al.  Size resolved infrared spectroscopy of Na(CH3OH)n (n = 4-7) clusters in the OH stretching region: unravelling the interaction of methanol clusters with a sodium atom and the emergence of the solvated electron. , 2012, Physical chemistry chemical physics : PCCP.

[42]  Marvin Johnson,et al.  The Vibrational Spectrum of the Neutral (H2O)6 Precursor to the “Magic” (H2O)6- Cluster Anion by Argon-Mediated, Population-Modulated Electron Attachment Spectroscopy , 2004 .

[43]  Bernd Hartke,et al.  Global Geometry Optimization of Molecular Clusters: TIP4P Water , 2000 .

[44]  Annika Lenz,et al.  On the stability of dense versus cage-shaped water clusters: Quantum-chemical investigations of zero-point energies, free energies, basis-set effects and IR spectra of (H2O)12 and (H2O)20 , 2006 .

[45]  Min Hu,et al.  Nucleation and growth of nanoparticles in the atmosphere. , 2012, Chemical reviews.

[46]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[47]  M. Suhm,et al.  The Raman spectrum of isolated water clusters. , 2014, Physical chemistry chemical physics : PCCP.

[48]  S. Kais,et al.  On the interactions between atmospheric radicals and cloud droplets: A molecular picture of the interface , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  L. Ojamäe,et al.  A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O)n, n = 1-60, and ice. , 2009, The Journal of chemical physics.

[50]  Richard J. Saykally,et al.  Terahertz Laser Vibration−Rotation Tunneling Spectroscopy and Dipole Moment of a Cage Form of the Water Hexamer , 1997 .

[51]  U. Buck,et al.  Fragmentation and reliable size distributions of large ammonia and water clusters , 2002 .

[52]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[53]  U. Buck,et al.  Detection of the book isomer from the OH-stretch spectroscopy of size selected water hexamers , 2004 .

[54]  Bernd Hartke,et al.  Global cluster geometry optimization by a phenotype algorithm with Niches: Location of elusive minima, and low‐order scaling with cluster size , 1999 .

[56]  D. McNaughton,et al.  Water ice nanoparticles: size and temperature effects on the mid-infrared spectrum. , 2013, Physical chemistry chemical physics : PCCP.

[57]  Jongseob Kim,et al.  Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies , 1998 .

[58]  N. Gimelshein,et al.  A Lagrangian-Eulerian approach to modeling homogeneous condensation in high density gas expansions. , 2011, The Journal of chemical physics.

[59]  R. Elber,et al.  Reaction path study of conformational transitions in flexible systems: Applications to peptides , 1990 .

[60]  Stephen Wiggins,et al.  Index k saddles and dividing surfaces in phase space with applications to isomerization dynamics. , 2011, The Journal of chemical physics.

[61]  U. Buck,et al.  Vibrational spectroscopy of size-selected sodium-doped water clusters. , 2006, The journal of physical chemistry. A.

[62]  R. Gaylord unpublished results , 1985 .

[63]  L. Wille,et al.  Computational complexity of the ground-state determination of atomic clusters , 1985 .

[64]  A. Fujii,et al.  Spectral signatures of four-coordinated sites in water clusters: infrared spectroscopy of phenol-(H2O)n (∼20 ≤ n ≤ ∼50). , 2011, The journal of physical chemistry. A.

[65]  A. Fujii,et al.  Infrared spectroscopy of phenol-(H2O)(n>10): structural strains in hydrogen bond networks of neutral water clusters. , 2009, The journal of physical chemistry. A.

[66]  D. Schwarzer,et al.  OD stretch vibrational relaxation of HOD in liquid to supercritical H(2)O. , 2009, The Journal of chemical physics.

[67]  M. Suhm,et al.  Femtisecond single-mole infrared spectroscopy of molecular clusters. , 2013, Physical chemistry chemical physics : PCCP.

[68]  U. Buck,et al.  Solid water clusters in the size range of tens–thousands of H2O: a combined computational/spectroscopic outlook , 2004 .

[69]  E. Williams,et al.  Effects of ions on hydrogen-bonding water networks in large aqueous nanodrops. , 2012, Journal of the American Chemical Society.

[70]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[71]  U. Buck,et al.  Sodium doped hydrogen bonded clusters: Solvated electrons and size selection , 2013 .

[72]  Sotiris S. Xantheas,et al.  Development of transferable interaction models for water. IV. A flexible, all-atom polarizable potential (TTM2-F) based on geometry dependent charges derived from an ab initio monomer dipole moment surface , 2002 .

[73]  H. Meyer,et al.  Scattering Analysis of Cluster Beams: Formation and Fragmentation of Small Ar n Clusters , 1984 .

[74]  Peter Salamon,et al.  Facts, Conjectures, and Improvements for Simulated Annealing , 1987 .

[75]  Johannes M. Dieterich,et al.  OGOLEM: Global cluster structure optimisation for arbitrary mixtures of flexible molecules. A multiscaling, object-oriented approach , 2010 .

[76]  Sergey Kazachenko,et al.  Water nanodroplets: predictions of five model potentials. , 2013, The Journal of chemical physics.

[77]  F. Huisken,et al.  Infrared spectroscopy of size-selected water and methanol clusters. , 2000, Chemical reviews.

[78]  Valeria Molinero,et al.  Structural transformation in supercooled water controls the crystallization rate of ice , 2011, Nature.