Soft Computing Methods in Flight Control System Design

Dit proefschrift is goedgekeurd door de promotor: No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the author.

[1]  M. Oosterom,et al.  Virtual sensor for fault detection and isolation in flight control systems - fuzzy modeling approach , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  Keith Glover,et al.  The application of scheduled H∞ controllers to a VSTOL aircraft , 1993, IEEE Trans. Autom. Control..

[4]  D. Youla,et al.  Single-loop feedback-stabilization of linear multivariable dynamical plants , 1974, Autom..

[5]  Robert Babuška,et al.  Fuzzy clustering for multiple-model approaches in system identification and control , 2001 .

[6]  A. Roli Artificial Neural Networks , 2012, Lecture Notes in Computer Science.

[7]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[8]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[9]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[10]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[11]  K. Maertens,et al.  Genetic polynomial regression as input selection algorithm for non-linear identification , 2006, Soft Comput..

[12]  Daniel U. Campos-Delgado,et al.  H∞ strong stabilization , 2001, IEEE Trans. Autom. Control..

[13]  Zhe Lin,et al.  Robust gain-scheduled aircraft longitudinal controller design using an /spl Hscr//sub /spl infin// approach , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[14]  Adrian J. Shepherd,et al.  Second-Order Methods for Neural Networks , 1997 .

[15]  Richard H. James The Synthetic Environment , 1998 .

[16]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[17]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Robert Babuska,et al.  Design of a gain-scheduling mechanism for flight control laws by fuzzy clustering , 2006 .

[19]  Arthur E. Bryson,et al.  Design of low-order compensators using parameter optimization , 1985, Autom..

[20]  Ferenc Szeifert,et al.  Compact TS-fuzzy models through clustering and OLS plus FIS model reduction , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[21]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[22]  Robert Babuska,et al.  Design of optimal membership functions for fuzzy gain-scheduled control , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[23]  Michael Athans,et al.  Analysis of gain scheduled control for nonlinear plants , 1990 .

[24]  Wilson J. Rugh,et al.  Gain scheduling for H-infinity controllers: a flight control example , 1993, IEEE Trans. Control. Syst. Technol..

[25]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[26]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Raghu Krishnapuram,et al.  Fitting an unknown number of lines and planes to image data through compatible cluster merging , 1992, Pattern Recognit..

[28]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[29]  G. E. Taylor,et al.  Computer Controlled Systems: Theory and Design , 1985 .

[30]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[31]  Enrique H. Ruspini,et al.  Numerical methods for fuzzy clustering , 1970, Inf. Sci..

[32]  R. J. H. Wanhill,et al.  National Aerospace Laboratory NLR, Amsterdam, The Netherlands , 2003 .

[33]  R. Patton,et al.  A Review of Parity Space Approaches to Fault Diagnosis , 1991 .

[34]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[35]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[36]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[37]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[38]  Samir Bennani,et al.  Robust flight control : a design challenge , 1997 .

[39]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[40]  R. P. G. Collinson,et al.  Fly-by-wire flight control , 1999 .

[41]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[42]  P. A. Payne,et al.  Data fusion and artificial neural networks for biomass estimation , 1997 .

[43]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[44]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[45]  Prügel-Bennett,et al.  Analysis of genetic algorithms using statistical mechanics. , 1994, Physical review letters.

[46]  Moshe Idan,et al.  IN-FLIGHT WEIGHT AND BALANCE IDENTIFICATION USING NEURAL NETWORKS , 2004 .

[47]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[48]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[49]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[50]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[51]  John R. Broussard,et al.  Digital flight control design for a tandem-rotor helicopter , 1977, Autom..

[52]  S. J. Flockton,et al.  Modelling the behaviour of the genetic algorithm , 1995 .

[53]  E. Backer,et al.  Computer-assisted reasoning in cluster analysis , 1995 .

[54]  Mark B. Tischler,et al.  Advances in Aircraft Flight Control , 1996 .

[55]  R. Babuska,et al.  Automated procedure for gain scheduled flight control law design , 2000 .

[56]  Adrian J. Shepherd,et al.  Second-order methods for neural networks - fast and reliable training methods for multi-layer perceptrons , 1997, Perspectives in neural computing.

[57]  Bonaventure Intercontinental,et al.  ON DECISION AND CONTROL , 1985 .

[58]  Pedro Larrañaga,et al.  Genetic Algorithms: Bridging the Convergence Gap , 1999, Theor. Comput. Sci..

[59]  Rolf Isermann,et al.  Fault diagnosis of machines via parameter estimation and knowledge processing - Tutorial paper , 1991, Autom..

[60]  R. Garduno-Ramirez,et al.  Fuzzy scheduling control of a power plant , 2000, 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077).

[61]  P. Apkarian,et al.  Mixed H2/H∞ multi-channel linear parameter-varying control in discrete time , 2000 .

[62]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[63]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[64]  Patrick van der Smagt,et al.  Introduction to neural networks , 1995, The Lancet.

[65]  G. Schram Intelligent flight control - A fuzzy logic approach , 1998 .

[66]  Paul M. Frank,et al.  FUZZY TECHNIQUES IN FAULT DETECTION, ISOLATION AND DIAGNOSIS , 1999 .

[67]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[68]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[69]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[70]  Peter S. Maybeck,et al.  Sensor/actuator failure detection in the Vista F-16 by multiple model adaptive estimation , 1995, IEEE Transactions on Aerospace and Electronic Systems.

[71]  Robert Babuska,et al.  Soft computing applications in aircraft sensor management and flight control law reconfiguration , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[72]  Paul M. Frank,et al.  Fault Diagnosis in Dynamic Systems , 1993, Robotics, Mechatronics and Manufacturing Systems.

[73]  Pascal Traverse,et al.  A family of fault-tolerant systems: electrical flight controls, from Airbus A320/330/340 to future military transport aircraft , 1995, Microprocess. Microsystems.

[74]  David E. Goldberg,et al.  Genetic Algorithms and the Variance of Fitness , 1991, Complex Syst..

[75]  James Lam,et al.  Brief On simultaneous H∞ control and strong H∞ stabilization , 2000 .

[76]  George E. Cooper,et al.  The use of pilot rating in the evaluation of aircraft handling qualities , 1969 .

[77]  U. Kaymak,et al.  Compatible cluster merging for fuzzy modelling , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[78]  Marcel Oosterom,et al.  Fuzzy Gain-Scheduled H∞ Flight Control Law Design , 2002 .

[79]  Joe Suzuki,et al.  A Markov chain analysis on simple genetic algorithms , 1995, IEEE Trans. Syst. Man Cybern..

[80]  José Carlos Príncipe,et al.  A Markov Chain Framework for the Simple Genetic Algorithm , 1993, Evolutionary Computation.

[81]  S. Garg A simplified scheme for scheduling multivariable controllers , 1997 .

[82]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[83]  R.A. Perez,et al.  Full Envelope Multivariable Control of a Gas Turbine Engine , 1991, 1991 American Control Conference.

[84]  Hitay Özbay,et al.  On the synthesis of stable H∞ controllers , 1999 .

[85]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[86]  M. Sami Fadali,et al.  Selecting operating points for discrete-time gain scheduling , 2003, Comput. Electr. Eng..

[87]  Paul M. Frank,et al.  Observer-based supervision and fault detection in robots using nonlinear and fuzzy logic residual evaluation , 1996, IEEE Trans. Control. Syst. Technol..

[88]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems: theory and application , 1989 .

[89]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[90]  Christopher M. Atkinson,et al.  Virtual sensors for spark ignition engines using neural networks , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[91]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[92]  Madan M. Gupta,et al.  A DESIGN OF ALFLEX FLIGHT CONTROL SYSTEM USING FUZZY GAIN-SCHEDULING , 1997 .

[93]  Pascal Gahinet,et al.  Explicit controller formulas for LMI-based H∞ synthesis , 1996, Autom..

[94]  R. Babuska,et al.  Aircraft sensor management and flight control law reconfiguration - Fuzzy logic approach , 2001 .

[95]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  R.T. Reichert Dynamic scheduling of modern-robust-control autopilot designs for missiles , 1992, IEEE Control Systems.

[97]  Robert Babuska,et al.  Fuzzy Logic Control: Advances in Applications , 1999 .

[98]  Constantin V. Negoita,et al.  On Fuzzy Systems , 1978 .

[99]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[100]  K. Osuka,et al.  Gain scheduled control of nonlinear systems based on the linear-model-sets identification method , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[101]  M. Athans,et al.  Gain Scheduling: Potential Hazards and Possible Remedies , 1992, 1991 American Control Conference.

[102]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[103]  G. L. Zacharias,et al.  Fuzzy logic gain scheduling for flight control , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[104]  Robert F. Stengel,et al.  A fuzzy logic-parity space approach to actuator failure detection and identification , 1998 .

[105]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[106]  M. H. Smaili Simulation of an Affordable Fly-By-Wire System for Small Commercial Aircraft , 2001 .

[107]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[108]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[109]  Aaron J. Ostroff High-alpha application of variable-gain output feedback control , 1992 .

[110]  John Hodgkinson,et al.  Aircraft Handling Qualities , 1999 .

[111]  J. Chen,et al.  A Review of Parity Space Approaches to Fault Diagnosis , 1991 .

[112]  Robert F. Stengel,et al.  DETECTING AND IDENTIFYING MULTIPLE FAILURES IN A FLIGHT CONTROL SYSTEM , 1998 .

[113]  Robert Babuska,et al.  Fuzzy gain scheduling for flight control laws , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[114]  Raghu Krishnapuram Generation of membership functions via possibilistic clustering , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[115]  Vernon R. Schmitt,et al.  Fly-By-Wire: A Historical and Design Perspective , 1998 .

[116]  A. Willsky,et al.  Analytical redundancy and the design of robust failure detection systems , 1984 .