How Big Data and High-performance Computing Drive Brain Science

[1]  Xiangdong Fang,et al.  Big Data and the Brain: Peeking at the Future , 2019, Genom. Proteom. Bioinform..

[2]  Athanasios V. Vasilakos,et al.  Fast and Scalable Distributed Deep Convolutional Autoencoder for fMRI Big Data Analytics , 2017, Neurocomputing.

[3]  C. V. von Bartheld Myths and truths about the cellular composition of the human brain: A review of influential concepts. , 2018, Journal of chemical neuroanatomy.

[4]  J. Marchini,et al.  Genome-wide association studies of brain imaging phenotypes in UK Biobank , 2018, Nature.

[5]  Mitsuhisa Sato,et al.  Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers , 2018, Front. Neuroinform..

[6]  Mark W. Woolrich,et al.  Discovering dynamic brain networks from big data in rest and task , 2017, NeuroImage.

[7]  Ayman El-Baz,et al.  Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network. , 2018, Frontiers in bioscience.

[8]  Timo Dickscheid,et al.  Parcellation of visual cortex on high-resolution histological brain sections using convolutional neural networks , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[9]  D. James Surmeier,et al.  Selective neuronal vulnerability in Parkinson disease , 2017, Nature Reviews Neuroscience.

[10]  Esther Landhuis,et al.  Neuroscience: Big brain, big data , 2017, Nature.

[11]  Viktor K. Jirsa,et al.  The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread , 2017, NeuroImage.

[12]  B. Dickerson,et al.  PART II. State of the Field: Advances in Neuroimaging from the 2016 Alzheimer’s Imaging Consortium Alzheimer’s disease: The influence of age on clinical heterogeneity through the human brain connectome , 2017 .

[13]  Katrin Amunts,et al.  The EU's Human Brain Project (HBP) Flagship - Accelerating Brain Science Discovery and Collaboration , 2017, DAMDID/RCDL.

[14]  Nancy Y. Ip,et al.  China Brain Project: Basic Neuroscience, Brain Diseases, and Brain-Inspired Computing , 2016, Neuron.

[15]  Y. Yamaguchi,et al.  Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience , 2016, Neuron.

[16]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[17]  Viswanath Devanarayan,et al.  Big data to smart data in Alzheimer's disease: The brain health modeling initiative to foster actionable knowledge , 2016, Alzheimer's & Dementia.

[18]  Ghassem Tofighi,et al.  Deep Learning-based Pipeline to Recognize Alzheimer’s Disease using fMRI Data , 2016, bioRxiv.

[19]  Sai-Ho Ling,et al.  An Efficient Diagnosis System for Parkinson's Disease Using Deep Belief Network , 2017 .

[20]  Ayman El-Baz,et al.  Alzheimer's Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network , 2016, ArXiv.

[21]  S. Saxena,et al.  Making Mental Health a Global Priority , 2016, Cerebrum : the Dana forum on brain science.

[22]  PeiPeng Liang,et al.  The human brain functional parcellation based on fMRI data , 2016 .

[23]  Vince Grolmusz,et al.  Parameterizable consensus connectomes from the Human Connectome Project: the Budapest Reference Connectome Server v3.0 , 2016, Cognitive Neurodynamics.

[24]  Robert Oostenveld,et al.  ConnectomeDB—Sharing human brain connectivity data , 2016, NeuroImage.

[25]  P. Solomon,et al.  Alzheimer's Disease Dementia and Mild Cognitive Impairment Due to Alzheimer's Disease , 2016 .

[26]  S.N. Sotiropoulos,et al.  High resolution whole brain diffusion imaging at 7T for the Human Connectome Project , 2015, NeuroImage.

[27]  Reuben R. Shamir,et al.  Machine Learning Approach to Optimizing Combined Stimulation and Medication Therapies for Parkinson's Disease , 2015, Brain Stimulation.

[28]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[29]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[30]  D. V. van Essen,et al.  The human connectome in health and psychopathology , 2015, World psychiatry : official journal of the World Psychiatric Association.

[31]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[32]  Sidong Liu,et al.  Multimodal Neuroimaging Feature Learning for Multiclass Diagnosis of Alzheimer's Disease , 2015, IEEE Transactions on Biomedical Engineering.

[33]  Giovanni Montana,et al.  Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks , 2015, ICPRAM 2015.

[34]  Vince Grolmusz,et al.  The Budapest Reference Connectome Server v2.0 , 2014, Neuroscience Letters.

[35]  Andreas Horn,et al.  The structural–functional connectome and the default mode network of the human brain , 2014, NeuroImage.

[36]  Jeremy Hsu,et al.  IBM's new brain [News] , 2014 .

[37]  Li Yao,et al.  Big data analysis of the human brain’s functional interactions based on fMRI , 2014 .

[38]  J. Cummings,et al.  Alzheimer’s disease drug-development pipeline: few candidates, frequent failures , 2014, Alzheimer's Research & Therapy.

[39]  C. Eliasmith,et al.  The use and abuse of large-scale brain models , 2014, Current Opinion in Neurobiology.

[40]  Mu-ming Poo,et al.  Whereto the mega brain projects , 2014 .

[41]  C. Man,et al.  Parkinson's disease and risk of mortality: meta‐analysis and systematic review , 2014, Acta neurologica Scandinavica.

[42]  David C. Van Essen,et al.  Human Connectome Project , 2014, Encyclopedia of Computational Neuroscience.

[43]  Yong He,et al.  Disrupted structural and functional brain connectomes in mild cognitive impairment and Alzheimer’s disease , 2014, Neuroscience Bulletin.

[44]  Alex R. Smith,et al.  Sex differences in the structural connectome of the human brain , 2013, Proceedings of the National Academy of Sciences.

[45]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[46]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[47]  Olaf Sporns,et al.  The human connectome: Origins and challenges , 2013, NeuroImage.

[48]  Dinggang Shen,et al.  Deep Learning-Based Feature Representation for AD/MCI Classification , 2013, MICCAI.

[49]  Marcus Kaiser,et al.  The potential of the human connectome as a biomarker of brain disease , 2013, Front. Hum. Neurosci..

[50]  Oliver Bücker,et al.  Towards a Multiscale, High-Resolution Model of the Human Brain , 2013, BrainComp.

[51]  Thomas Lippert,et al.  Supercomputing Infrastructure for Simulations of the Human Brain , 2013, BrainComp.

[52]  Enrico Macii,et al.  The Human Brain Project and neuromorphic computing. , 2013, Functional neurology.

[53]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[54]  Anthony Maida,et al.  Natural Image Bases to Represent Neuroimaging Data , 2013, ICML.

[55]  Keith W. Miller,et al.  Big Data: New Opportunities and New Challenges [Guest editors' introduction] , 2013, Computer.

[56]  Yong He,et al.  Disrupted Functional Brain Connectome in Individuals at Risk for Alzheimer's Disease , 2013, Biological Psychiatry.

[57]  Lydia Ng,et al.  Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system , 2012, Nucleic Acids Res..

[58]  Michael W. Spratling,et al.  Encyclopedia of Computational Neuroscience , 2013 .

[59]  Trevor Bekolay,et al.  A Large-Scale Model of the Functioning Brain , 2012, Science.

[60]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[61]  Henry Markram,et al.  The human brain project. , 2012, Scientific American.

[62]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[63]  Olaf Sporns,et al.  THE HUMAN CONNECTOME: A COMPLEX NETWORK , 2011, Schizophrenia Research.

[64]  Adni,et al.  Biomarker discovery for sparse classification of brain images in Alzheimer's disease , 2012 .

[65]  Timothy O. Laumann,et al.  Informatics and Data Mining Tools and Strategies for the Human Connectome Project , 2011, Front. Neuroinform..

[66]  M. Gazzaniga,et al.  Understanding complexity in the human brain , 2011, Trends in Cognitive Sciences.

[67]  T. Chan,et al.  Independent component analysis-based classification of Alzheimer's disease MRI data. , 2011, Journal of Alzheimer's disease : JAD.

[68]  Karlheinz Meier,et al.  Introducing the Human Brain Project , 2011, FET.

[69]  Anselm H. C. Horn,et al.  Amyloid-beta42 oligomer structures from fibrils: a systematic molecular dynamics study. , 2010, The journal of physical chemistry. B.

[70]  John Suckling,et al.  Generic aspects of complexity in brain imaging data and other biological systems , 2009, NeuroImage.

[71]  Ben Taskar,et al.  A General and Unifying Framework for Feature Construction, in Image-Based Pattern Classification , 2009, IPMI.

[72]  Nick C Fox,et al.  Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method , 2008, Brain : a journal of neurology.

[73]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[74]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[75]  D. Bergen,et al.  Read Neurological Disorders Public Health Challenges Neurological Disorders Public Health Challenges , 2017 .

[76]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[77]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[78]  Michael L. Hines,et al.  Parallel network simulations with NEURON , 2006, Journal of Computational Neuroscience.

[79]  C. Mathers,et al.  Global Burden of Neurological Disorders: Estimates and Projections , 2006 .

[80]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[81]  John Q Trojanowski,et al.  Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs , 2004, Nature Medicine.

[82]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[83]  Francine Berman,et al.  The Virtual Instrument: Support for Grid-Enabled Mcell Simulations , 2004, Int. J. High Perform. Comput. Appl..

[84]  Daniel P. F. Sturdy,et al.  The connectivity of the brain: multi-level quantitative analysis , 1995, Biological Cybernetics.

[85]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[86]  William Gropp,et al.  Beowulf Cluster Computing with Linux , 2003 .

[87]  Brian D. Davison NCS: Network and Cache Simulator -- An Introduction , 2001 .

[88]  Michael L. Hines,et al.  NEOSIM: Portable large-scale plug and play modelling , 2001, Neurocomputing.

[89]  Luo Sq Study on digitized atlas of the human brain , 2001 .

[90]  S. Luo [Study on digitized atlas of the human brain]. , 2001, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation.

[91]  Jacques Gautrais,et al.  SpikeNET: A simulator for modeling large networks of integrate and fire neurons , 1999, Neurocomputing.

[92]  Rajkumar Buyya,et al.  High Performance Cluster Computing: Architectures and Systems , 1999 .

[93]  Perry L. Miller,et al.  The Human Brain Project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data , 1998, Trends in Neurosciences.

[94]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[95]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[96]  Erik De Schutter,et al.  A consumer guide to neuronal modeling software , 1992, Trends in Neurosciences.

[97]  Matthew A. Wilson,et al.  GENESIS: A System for Simulating Neural Networks , 1988, NIPS.