Force field, dipole moment derivatives, and vibronic constants of benzene from a combination of experimental and ab initio quantum chemical information

The quadratic and the most important cubic force constants of benzene have been determined from ab initio Hartree–Fock calculations with a double‐zeta basis set. Some constants have also been recalculated using other basis sets, including a polarized one. A few empirical scale factors, applied to the ab initio force field, allow the reproduction of a large number of observed vibrational frequencies, isotope shifts, and Coriolis constants within the uncertainties of experiment and the harmonic model. It is shown that the simultaneous utilization of ab initio and spectroscopical information is sufficient for the conclusive resolution of the uncertainties and alternatives in previous empirical force fields. The resulting scale factors can be used directly to obtain force fields for other aromatic hydrocarbons from ab initio calculations. Reproduction of the observed infrared intensities is only moderately successful, even with the polarized basis set. The calculated vibronic coupling constants show qualitati...

[1]  P. Pulay An efficient ab initio gradient program , 1979 .

[2]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[3]  K. Ohno Normal coordinate calculations of benzenoid hydrocarbons: Theoretical models of simplified valence force fields , 1978 .

[4]  P. Botschwina,et al.  Ab initio stretching force constants for HCCH, FCCH and C1CCH , 1978 .

[5]  H. Schlegel,et al.  Ab initio computation of force constants. IV. The theoretical anharmonic force fields and vibrational frequencies of methylamine, methanol, and methanethiol , 1978 .

[6]  C. Altona,et al.  Application of self-consistent-field ab initio calculations to organic molecules: VI. Dimethylether: general valence force field scaled on experimental frequencies, infra-red and Raman intensities , 1977 .

[7]  P. Pulay,et al.  Prediction of vibrational spectra by the CNDO/2 force method: Part III. In-plane vibrations of benzene , 1977 .

[8]  P. Pulay,et al.  Prediction of vibrational spectra by the CNDO/2 force method: II. The calculation of vibrational frequencies of cis and trans forms of glyoxal, acrolein and 1,3 butadiene , 1976 .

[9]  T. Nakajima,et al.  The instabilities of the Hartree–Fock solutions and the lattice instabilities for conjugated hydrocarbons: The bond‐order and bond‐length alternations , 1976 .

[10]  L. Cederbaum,et al.  The electronic structure of molecules by a many‐body approach. I. Ionization potentials and one‐electron properties of benzene , 1976 .

[11]  L. Pietronero,et al.  Electron–vibration interactions in benzene and deuterobenzene , 1976 .

[12]  J. Gleghorn,et al.  Semi-empirical studies of molecular vibrations:: Part 2 A study of the vibrations of the benzene and perdeutero benzene molecules , 1976 .

[13]  Peter Pulay,et al.  Comparison of ab initio, CNDO/2 and experimental dipole moment derivatives for C2 hydrocarbons and formaldehyde , 1975 .

[14]  I. Shavitt,et al.  Ab initio configuration interaction studies of the π-electron states of benzene , 1974 .

[15]  L. Cederbaum,et al.  On the vibrational structure in photoelectron spectra by the method of Green's functions , 1974 .

[16]  R. Bruns,et al.  CNDO Calculation of Dipole Moment Derivatives and Infrared Intensities of C6H6 and C6F6 , 1972 .

[17]  P. Pulay,et al.  Near Hartree—Fock Calculations of the Force Constants and Dipole Moment Derivatives in Methane , 1972 .

[18]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[19]  R. G. Snyder,et al.  A valence force field for alkyl benzenes Toluene, p-xylene, m-xylene mesitylene, and some of their deuterated analogues , 1971 .

[20]  R. A. Kydd Torsional force constants and the benzene out-of-plane force field , 1971 .

[21]  D. C. Mckean,et al.  On isotopic substitution and the choice between alternative sets of force constants; with special reference to the cases of ethylene, ketene, diazomethane and formaldehyde , 1971 .

[22]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[23]  D. Steele,et al.  Studies in vibrational absorption intensities: The determination of vibrational transition moments for symmetric top molecules from P- and R-branch maxima , 1969 .

[24]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[25]  J. Duinker,et al.  Normal coordinates for the planar vibrations of benzene , 1968 .

[26]  J. Scherer A transferable force-field for out-of-plane vibrations of chlorinated benzenes , 1967 .

[27]  S. Califano,et al.  A simplified valence force field of aromatic hydrocarbons—I Normal co-ordinate calculations for C6D6, C6D6, C10H8, C10D8, C14H10 and C14D10 , 1966 .

[28]  T. M. Dunn,et al.  Rotational analysis of the 2600a absorption system of benzene , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  T. Shimanouchi,et al.  Normal Vibrations and Intermolecular Forces of Crystalline Benzene and Naphthalene , 1966 .

[30]  M. Mellon Infrared spectroscopy and molecular structure: Edited by Mansel Davies. University College of Wales, Aberystwyth, Wales. xii + 468 pp. Elsevier, Amsterdam, 1963. $13.50 , 1964 .

[31]  J. Scherer A comparison of Urey Bradley and valence force-fields for chlorinated benzenes , 1964 .

[32]  I. Mills A model for stretch-bend interactions in molecular force fields , 1963 .

[33]  D. Dows,et al.  Infrared absorption intensities in C6D6 (g) , 1962 .

[34]  D. Whiffen,et al.  Intensities in the infra-red spectrum of benzene , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  T. Shimanouchi,et al.  Out‐of‐Plane Force Constants of Benzene , 1956 .

[36]  B. P. Stoicheff,et al.  HIGH RESOLUTION RAMAN SPECTROSCOPY OF GASES: VI. ROTATIONAL SPECTRUM OF SYMMETRIC BENZENE-d3 , 1956 .

[37]  D. Whiffen The force field, vibration frequencies, normal co-ordinates, infra-red and Raman intensities for benzene , 1955, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[38]  D. Hornig,et al.  The Vibrational Spectra of Molecules and Complex Ions in Crystals. II. Benzene , 1949 .

[39]  F. Miller,et al.  The Non‐Planar Vibrations of Benzene , 1946 .

[40]  J. Koenig,et al.  A normal vibrational analysis of benzene , 1977 .

[41]  J. Koenig,et al.  Liquid phase vibrational spectra of 13C-isotopes of benzene , 1977 .

[42]  J. Favrot Champ de force et modes normaux des vibrations planes du benzène et de ses dérivés deutériés - discussion , 1975 .

[43]  T. A. Williams,et al.  Photoelectron spectra of benzene and some fluorobenzenes , 1972 .

[44]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[45]  G. Varsányi,et al.  Vibrational spectra of benzene derivatives , 1969 .

[46]  J. Scherer,et al.  The application of the Urey-Bradley force field to the in-plane vibrations of benzene , 1961 .

[47]  S. Califano,et al.  The application of the Urey-Bradley force field to the in-plane vibrations of benzene , 1960 .

[48]  R. Bell,et al.  Bond torsion in the vibrations of the benzene molecule , 1945 .