cardiac meshes An automatic service for the personalization of ventricular

Cite this article: Lamata P et al. 2014 Anautomatic service for the personalization ofventricular cardiac meshes. J. R. Soc. Interface11: 20131023.http://dx.doi.org/10.1098/rsif.2013.1023Received: 5 November 2013Accepted: 18 November 2013Subject Areas:biomechanics, biomedical engineering,biometricsKeywords:computational physiology, cardiac modelling,computational meshAuthor for correspondence:Pablo Lamatae-mail: pablo.lamata@kcl.ac.uk

[1]  Max A. Viergever,et al.  Registration-based interpolation , 2004, IEEE Transactions on Medical Imaging.

[2]  N. Trayanova Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. , 2011, Circulation research.

[3]  T. Sochi,et al.  A computationally efficient framework for the simulation of cardiac perfusion using a multi‐compartment Darcy porous‐media flow model , 2013, International journal for numerical methods in biomedical engineering.

[4]  Olivier Ecabert,et al.  Automatic Model-Based Segmentation of the Heart in CT Images , 2008, IEEE Transactions on Medical Imaging.

[5]  P. Hunter,et al.  Mathematical model of geometry and fibrous structure of the heart. , 1991, The American journal of physiology.

[6]  Alejandro F. Frangi,et al.  A statistical shape model of the heart and its application to model-based segmentation , 2007, SPIE Medical Imaging.

[7]  Dorin Comaniciu,et al.  Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features , 2008, IEEE Transactions on Medical Imaging.

[8]  Adarsh Krishnamurthy,et al.  An atlas-based geometry pipeline for cardiac Hermite model construction and diffusion tensor reorientation , 2012, Medical Image Anal..

[9]  David Gavaghan,et al.  Generation of histo-anatomically representative models of the individual heart: tools and application , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Alejandro F. Frangi,et al.  Efficient computational fluid dynamics mesh generation by image registration , 2007, Medical Image Anal..

[11]  Michael I. Miller,et al.  Image-Based Estimation of Ventricular Fiber Orientations for Personalized Modeling of Cardiac Electrophysiology , 2012, IEEE Transactions on Medical Imaging.

[12]  Justin W. Fernandez,et al.  Anatomically based geometric modelling of the musculo-skeletal system and other organs , 2004, Biomechanics and modeling in mechanobiology.

[13]  Daniel Rueckert,et al.  Cardiac Image Super-Resolution with Global Correspondence Using Multi-Atlas PatchMatch , 2013, MICCAI.

[14]  Adarsh Krishnamurthy,et al.  A three-dimensional finite element model of human atrial anatomy: New methods for cubic Hermite meshes with extraordinary vertices , 2013, Medical Image Anal..

[15]  David Nordsletten,et al.  Simulating left ventricular fluid-solid mechanics through the cardiac cycle under LVAD support , 2013, J. Comput. Phys..

[16]  Eric Kerfoot,et al.  Share and enjoy: anatomical models database—generating and sharing cardiovascular model data using web services , 2012, Medical & Biological Engineering & Computing.

[17]  Sébastien Ourselin,et al.  A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI , 2010, IEEE Transactions on Medical Imaging.

[18]  Alejandro F. Frangi,et al.  Understanding the mechanisms amenable to CRT response: from pre-operative multimodal image data to patient-specific computational models , 2013, Medical & Biological Engineering & Computing.

[19]  G. Richard Christie,et al.  Modelling and visualising the heart , 2002 .

[20]  A Garfinkel,et al.  Role of papillary muscle in the generation and maintenance of reentry during ventricular tachycardia and fibrillation in isolated swine right ventricle. , 1999, Circulation.

[21]  P J Hunter,et al.  A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II--Prolate spheroidal coordinates. , 1996, Journal of biomechanical engineering.

[22]  Pablo Lamata,et al.  An accurate, fast and robust method to generate patient-specific cubic Hermite meshes , 2011, Medical Image Anal..

[23]  Pablo Lamata,et al.  Preterm Heart in Adult Life: Cardiovascular Magnetic Resonance Reveals Distinct Differences in Left Ventricular Mass, Geometry, and Function , 2012, Circulation.

[24]  Hervé Delingette,et al.  Sharing and reusing cardiovascular anatomical models over the Web: a step towards the implementation of the virtual physiological human project , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  P. Hunter,et al.  Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function , 2011 .

[26]  Alistair A. Young,et al.  Large Scale Left Ventricular Shape Atlas Using Automated Model Fitting to Contours , 2013, FIMH.

[27]  David J. Gavaghan,et al.  A comparison of numerical methods used for finite element modelling of soft tissue deformation , 2009 .

[28]  Pablo Lamata,et al.  Quality Metrics for High Order Meshes: Analysis of the Mechanical Simulation of the Heart Beat , 2013, IEEE Transactions on Medical Imaging.

[29]  Hervé Delingette,et al.  Patient-specific Electromechanical Models of the Heart for the Prediction of Pacing Acute Effects in Crt: a Preliminary Clinical Validation , 2022 .

[30]  Gregory M. Fomovsky,et al.  Model-Based Design of Mechanical Therapies for Myocardial Infarction , 2011, Journal of cardiovascular translational research.

[31]  Sébastien Ourselin,et al.  The estimation of patient-specific cardiac diastolic functions from clinical measurements , 2012, Medical Image Anal..

[32]  Gernot Plank,et al.  Automatically Generated, Anatomically Accurate Meshes for Cardiac Electrophysiology Problems , 2009, IEEE Transactions on Biomedical Engineering.

[33]  Q. Du,et al.  Recent progress in robust and quality Delaunay mesh generation , 2006 .

[34]  Vicente Grau,et al.  Towards High-Resolution Cardiac Atlases: Ventricular Anatomy Descriptors for a Standardized Reference Frame , 2010, STACOM/CESC.

[35]  G. Plank,et al.  Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. , 2011, Cardiovascular research.

[36]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .

[37]  Roy C. P. Kerckhoffs,et al.  Cardiac resynchronization: insight from experimental and computational models. , 2008, Progress in biophysics and molecular biology.

[38]  Peter J. Hunter,et al.  FieldML, a proposed open standard for the Physiome project for mathematical model representation , 2013, Medical & Biological Engineering & Computing.