Mapping between Witten and lightcone string field theories
暂无分享,去创建一个
[1] H. Erbin,et al. Initial value problem in string-inspired nonlocal field theory , 2021, Journal of High Energy Physics.
[2] Alex S. Arvanitakis,et al. Homotopy Transfer and Effective Field Theory I: Tree‐level , 2020, Fortschritte der Physik.
[3] Hiroaki Matsunaga,et al. Perturbative path-integral of string field and the A∞ structure of the BV master equation , 2020, Progress of Theoretical and Experimental Physics.
[4] B. Zwiebach,et al. Hyperbolic string vertices , 2019, Journal of High Energy Physics.
[5] Atakan Hilmi Firat,et al. Hyperbolic three-string vertex , 2021, Journal of High Energy Physics.
[6] Y. Okawa,et al. Gauge-invariant operators of open bosonic string field theory in the low-energy limit , 2020, 2006.16710.
[7] C. Maccaferri,et al. Classical algebraic structures in string theory effective actions , 2020, Journal of High Energy Physics.
[8] T. Erler,et al. Four lectures on closed string field theory , 2019, Physics Reports.
[9] Hiroaki Matsunaga. Light-cone reduction of Witten’s open string field theory , 2019, Journal of High Energy Physics.
[10] B. Jurčo,et al. L∞‐Algebras of Classical Field Theories and the Batalin–Vilkovisky Formalism , 2018, Fortschritte der Physik.
[11] Seyed Faroogh Moosavian,et al. Hyperbolic geometry and closed bosonic string field theory. Part I. The string vertices via hyperbolic Riemann surfaces , 2017, Journal of High Energy Physics.
[12] N. Ishibashi. Multiloop Amplitudes of Light-cone Gauge String Field Theory for Type II Superstrings , 2018, 1810.03801.
[13] N. Ishibashi,et al. Multiloop amplitudes of light-cone gauge superstring field theory: odd spin structure contributions , 2017, 1712.09049.
[14] T. Erler,et al. Vertical integration from the large Hilbert space , 2017, 1710.07232.
[15] H. Erbin,et al. Closed superstring field theory and its applications , 2017, 1703.06410.
[16] A. Sen. Wilsonian effective action of superstring theory , 2016, 1609.00459.
[17] A. Sen. Unitarity of superstring field theory , 2016, 1607.08244.
[18] N. Ishibashi. Light-cone gauge superstring field theory in a linear dilaton background , 2016, 1605.04666.
[19] R. Pius,et al. Cutkosky rules for superstring field theory , 2016, 1604.01783.
[20] T. Erler. Relating Berkovits and A∞ superstring field theories; small Hilbert space perspective , 2015 .
[21] A. Sen. BV master action for heterotic and type II string field theories , 2015, 1508.05387.
[22] Y. Okawa,et al. Complete action for open superstring field theory , 2015, 1508.00366.
[23] Sebastian Konopka,et al. The S-matrix of superstring field theory , 2015, 1507.08250.
[24] E. Witten,et al. Filling the gaps with PCO’s , 2015, 1504.00609.
[25] A. Sen. Off‐shell Amplitudes in Superstring Theory , 2014, 1408.0571.
[26] M. Schnabl. Noncommutative Geometry and String Field Theory , 2014 .
[27] A. Sen,et al. String perturbation theory around dynamically shifted vacuum , 2014, 1404.6254.
[28] A. Sen,et al. Mass renormalization in string theory: general states , 2014, 1401.7014.
[29] A. Sen,et al. Mass renormalization in string theory: special states , 2013, 1311.1257.
[30] I. Sachs,et al. Resolving Witten’s superstring field theory , 2013, 1312.2948.
[31] N. Ishibashi,et al. Multiloop amplitudes of light-cone gauge NSR string field theory in noncritical dimensions , 2013, 1611.06340.
[32] N. Ishibashi,et al. Multiloop amplitudes of light-cone gauge bosonic string field theory in noncritical dimensions , 2013, 1307.6001.
[33] I. Sachs,et al. Closed string cohomology in open string field theory , 2010, 1010.4125.
[34] Yutaka Baba,et al. Light-cone gauge string field theory in noncritical dimensions , 2009, 0909.4675.
[35] T. Erler. A simple analytic solution for tachyon condensation , 2009, 0906.0979.
[36] N. Ohta,et al. On the No-Ghost Theorem in String Theory , 2006, hep-th/0607105.
[37] M. Markl. TRANSFERRING A^ (STRONGLY HOMOTOPY ASSOCIATIVE) STRUCTURES , 2006 .
[38] K. Costello. The Gromov-Witten potential associated to a TCFT , 2005, math/0509264.
[39] D. Gross,et al. Locality, causality, and an initial value formulation for open string field theory , 2004, hep-th/0406199.
[40] Y. Kazama,et al. Relating Green-Schwarz and extended pure spinor formalisms by similarity transformation , 2004, hep-th/0404141.
[41] H. Hata,et al. Time dependent solution in cubic string field theory , 2003, hep-th/0304163.
[42] M. Spradlin,et al. Superstring interactions in a pp-wave background II , 2002, hep-th/0206073.
[43] M. Spradlin,et al. Superstring interactions in a pp -wave background , 2002, hep-th/0204146.
[44] M. Schnabl. Wedge states in string field theory , 2002, hep-th/0201095.
[45] H. Kajiura. Homotopy algebra morphism and geometry of classical string field theories , 2001, hep-th/0112228.
[46] B. Zwiebach,et al. Developing the covariant Batalin-Vilkovisky approach to string theory , 1993, hep-th/9301097.
[47] B. Zwiebach. Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation , 1992, hep-th/9206084.
[48] T. Kugo,et al. Target Space Duality as a Symmetry of String Field Theory , 1992, hep-th/9201040.
[49] G. Siopsis. Light-cone gauge in Witten's string field theory , 1991 .
[50] Maeno. Canonical quantization of Witten's string field theory using midpoint light-cone time. , 1991, Physical review. D, Particles and fields.
[51] E. D'hoker,et al. Unitarity of closed superstring perturbation theory , 1990 .
[52] M. Peskin,et al. String field theory on the conformal plane (I).: Kinematical Principles , 1989 .
[53] B. Zwiebach,et al. Closed String Field Theory from Polyhedra , 1989 .
[54] 田中 正,et al. SUPERSTRING THEORY , 1989, The Lancet.
[55] Michael B. Green,et al. Contact Interactions in Superstring Theory , 1988 .
[56] M. Kaku. Why are there two BRST string field theories , 1988 .
[57] F. Klinkhamer,et al. Superstring amplitudes and contact interactions , 1988 .
[58] S. Giddings. Conformal Techniques in String Theory and String Field Theory , 1988 .
[59] S. Wolpert,et al. A triangulation of moduli space from light-cone string theory , 1987 .
[60] Michael B. Green,et al. Superstring Theory: Volume 2, Loop Amplitudes, Anomalies and Phenomenology , 1987 .
[61] F. Klinkhamer,et al. New interactions for superstrings , 1987 .
[62] C. Thorn. A Detailed Study of the Physical State Conditions in Covariantly Quantized String Theories , 1987 .
[63] S. Giddings,et al. Unitarity of the closed bosonic Polyakov string , 1987 .
[64] Hata,et al. Covariant string field theory. , 1986, Physical review. D, Particles and fields.
[65] D. Olive,et al. BRS cohomology in string theory and the no-ghost theorem , 1986 .
[66] Edward Witten,et al. Non-commutative geometry and string field theory , 1986 .
[67] S. Mandelstam. THE INTERACTING STRING PICTURE AND FUNCTIONAL INTEGRATION , 1985 .
[68] Michael B. Green,et al. Superstring Field Theory , 1984 .
[69] Mitsuhiro Kato,et al. Covariant quantization of string based on BRS invariance , 1983 .
[70] R. Tucker,et al. Quantum strings and the functional calculus , 1975 .
[71] K. Kikkawa. Field theory of relativistic strings , 1975 .
[72] M. Kaku,et al. Field theory of relativistic strings. II. Loops and Pomerons , 1974 .
[73] M. Kaku,et al. Field theory of relativistic strings. I. Trees , 1974 .
[74] J. Gervais,et al. Combining and splitting relativistic strings , 1974 .
[75] P. Ramond. Simple construction of the physical-state projection operators in dual models , 1974 .
[76] S. Mandelstam. Interacting-string picture of the Neveu-Schwarz-Ramond model , 1974 .
[77] S. Mandelstam. Interacting-string picture of dual-resonance models☆ , 1973 .
[78] P. Goddard,et al. The off-mass shell physical state projection operator for the dual resonance model , 1973 .
[79] L. Brink,et al. The physical state projection operator in dual resonance models for the critical dimension of space-time , 1973 .
[80] J. Goldstone,et al. Quantum dynamics of a massless relativistic string , 1973 .
[81] P. Goddard,et al. Compatibility of the Dual Pomeron with Unitarity and the Absence of Ghosts in the Dual Resonance Model , 1972 .
[82] E. Giudice,et al. GENERAL PROPERTIES OF THE DUAL RESONANCE MODEL. , 1972 .
[83] R. Brower. Spectrum generating algebra and no ghost theorem for the dual model , 1972 .
[84] D. Gilbarg,et al. A Generalization of the Schwarz-Christoffel Transformation. , 1949, Proceedings of the National Academy of Sciences of the United States of America.