Distinct role of endocytosis for Smad and non-Smad TGF-β signaling regulation in hepatocytes.

[1]  K. Iwaisako,et al.  Hepatocytes do not undergo epithelial‐mesenchymal transition in liver fibrosis in mice , 2010, Hepatology.

[2]  F. Wenz,et al.  Overexpression of Caveolin-1 in Lymphoblastoid TK6 Cells Enhances Proliferation After Irradiation with Clinically Relevant Doses , 2010, Strahlentherapie und Onkologie.

[3]  Á. Valverde,et al.  Impairment of Transforming Growth Factor β Signaling in Caveolin-1-deficient Hepatocytes , 2009, The Journal of Biological Chemistry.

[4]  G. Hsiao,et al.  Inhibitors of clathrin-dependent endocytosis enhance TGFβ signaling and responses , 2009, Journal of Cell Science.

[5]  C. Meyer,et al.  Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor β–induced apoptosis , 2009, Hepatology.

[6]  A. Gressner,et al.  Connective tissue growth factor is a Smad2 regulated amplifier of transforming growth factor β actions in hepatocytes—But without modulating bone morphogenetic protein 7 signaling , 2009, Hepatology.

[7]  A. Leask,et al.  Rac1 signaling regulates CTGF/CCN2 gene expression via TGFbeta/Smad signaling in chondrocytes. , 2009, Osteoarthritis and cartilage.

[8]  O. Sagol,et al.  Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion , 2009, BMC Cancer.

[9]  W. Zuo,et al.  Specific activation of mitogen-activated protein kinase by transforming growth factor-beta receptors in lipid rafts is required for epithelial cell plasticity. , 2008, Molecular Biology of the Cell.

[10]  P. P. Di Fiore,et al.  Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. , 2008, Developmental cell.

[11]  S. Dooley,et al.  Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. , 2008, Gastroenterology.

[12]  X. Zhang,et al.  Molecular requirements for induction of CTGF expression by TGF-beta1 in primary osteoblasts. , 2008, Bone.

[13]  F. Wenz,et al.  MDR1 Gene Transfer Using a Lentiviral SIN Vector Confers Radioprotection to Human CD34+ Hematopoietic Progenitor Cells , 2008, Radiation research.

[14]  J. Colicelli,et al.  Integration of Transforming Growth Factor β and RAS Signaling Silences a RAB5 Guanine Nucleotide Exchange Factor and Enhances Growth Factor-Directed Cell Migration , 2007, Molecular and Cellular Biology.

[15]  Bernhard Schmierer,et al.  TGFβ–SMAD signal transduction: molecular specificity and functional flexibility , 2007, Nature Reviews Molecular Cell Biology.

[16]  Xianlin Han,et al.  Cholesterol suppresses cellular TGF-β responsiveness: implications in atherogenesis , 2007, Journal of Cell Science.

[17]  S. Dooley,et al.  Profibrogenic transforming growth factor‐β/activin receptor–like kinase 5 signaling via connective tissue growth factor expression in hepatocytes , 2007, Hepatology.

[18]  R. Kalluri,et al.  Fibroblasts Derive from Hepatocytes in Liver Fibrosis via Epithelial to Mesenchymal Transition* , 2007, Journal of Biological Chemistry.

[19]  Samy Lamouille,et al.  Cell size and invasion in TGF-β–induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway , 2007, The Journal of cell biology.

[20]  Andrew Leask,et al.  All in the CCN family: essential matricellular signaling modulators emerge from the bunker , 2006, Journal of Cell Science.

[21]  S. Dooley,et al.  Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. , 2006, Systems biology.

[22]  Y. Henis,et al.  Different Routes of Bone Morphogenic Protein (BMP) Receptor Endocytosis Influence BMP Signaling , 2006, Molecular and Cellular Biology.

[23]  Youxin Jin,et al.  Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats , 2006, The journal of gene medicine.

[24]  M. Barcellos-Hoff,et al.  Activated type I TGFβ receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression , 2006, Oncogene.

[25]  Chun-Lin Chen,et al.  Cellular Heparan Sulfate Negatively Modulates Transforming Growth Factor-β1 (TGF-β1) Responsiveness in Epithelial Cells* , 2006, Journal of Biological Chemistry.

[26]  R. Derynck,et al.  SPECIFICITY AND VERSATILITY IN TGF-β SIGNALING THROUGH SMADS , 2005 .

[27]  D. Brenner,et al.  Erratum: Liver fibrosis (Journal of Clinical Investigation (2005) 115 (209-218) DOI:10.1172/JCI200524282) , 2005 .

[28]  Jae Youn Yi,et al.  Type I Transforming Growth Factor β Receptor Binds to and Activates Phosphatidylinositol 3-Kinase* , 2005, Journal of Biological Chemistry.

[29]  H. Schnaper,et al.  The Role of Internalization in Transforming Growth Factor β1-induced Smad2 Association with Smad Anchor for Receptor Activation (SARA) and Smad2-dependent Signaling in Human Mesangial Cells* , 2005, Journal of Biological Chemistry.

[30]  A. Phillips,et al.  Hyaluronan Regulates Transforming Growth Factor-β1 Receptor Compartmentalization* , 2004, Journal of Biological Chemistry.

[31]  Jeffrey L. Wrana,et al.  Distinct endocytic pathways regulate TGF-β receptor signalling and turnover , 2003, Nature Cell Biology.

[32]  A. Chawla,et al.  TGFβ receptor internalization into EEA1-enriched early endosomes , 2002, The Journal of Cell Biology.

[33]  J. Backer,et al.  Transforming Growth Factor β Activates Smad2 in the Absence of Receptor Endocytosis* , 2002, The Journal of Biological Chemistry.

[34]  E. Robertis,et al.  Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β , 2002, Nature Cell Biology.

[35]  J. Doré,et al.  Internalization-Dependent and -Independent Requirements for Transforming Growth Factor β Receptor Signaling via the Smad Pathway , 2002, Molecular and Cellular Biology.

[36]  P. Dijke,et al.  The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF‐β/Smad signalling , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[37]  Tomoki Chiba,et al.  Smurf1 Interacts with Transforming Growth Factor-β Type I Receptor through Smad7 and Induces Receptor Degradation* , 2001, The Journal of Biological Chemistry.

[38]  M. Bitzer,et al.  Caveolin-1 Regulates Transforming Growth Factor (TGF)-β/SMAD Signaling through an Interaction with the TGF-β Type I Receptor* , 2001, The Journal of Biological Chemistry.

[39]  J. Wrana,et al.  Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. , 2000, Molecular cell.

[40]  H. Moses,et al.  Phosphatidylinositol 3-Kinase Function Is Required for Transforming Growth Factor β-mediated Epithelial to Mesenchymal Transition and Cell Migration* , 2000, The Journal of Biological Chemistry.

[41]  J. Massagué,et al.  TGFβ Signaling in Growth Control, Cancer, and Heritable Disorders , 2000, Cell.

[42]  H. Lodish,et al.  Role of transforming growth factor beta in human disease. , 2000, The New England journal of medicine.

[43]  P. De Camilli,et al.  Epidermal growth factor pathway substrate 15, Eps15. , 1999, The international journal of biochemistry & cell biology.

[44]  A. Dautry‐Varsat,et al.  Inhibition of clathrin-coated pit assembly by an Eps15 mutant. , 1999, Journal of cell science.

[45]  Liliana Attisano,et al.  SARA, a FYVE Domain Protein that Recruits Smad2 to the TGFβ Receptor , 1998, Cell.

[46]  J. Lasky,et al.  Connective tissue growth factor mRNA expression is upregulated in bleomycin-induced lung fibrosis. , 1998, American journal of physiology. Lung cellular and molecular physiology.

[47]  J. Pessin,et al.  Inhibition of Clathrin-Mediated Endocytosis Selectively Attenuates Specific Insulin Receptor Signal Transduction Pathways , 1998, Molecular and Cellular Biology.

[48]  S. Schmid,et al.  AP-2/Eps15 Interaction Is Required for Receptor-mediated Endocytosis , 1998, The Journal of cell biology.

[49]  P. Pelicci,et al.  eps15 and eps15R are essential components of the endocytic pathway. , 1997, Cancer research.

[50]  Gary R. Grotendorst Connective tissue growth factor: a mediator of TGF-β action on fibroblasts , 1997 .

[51]  R. G. Anderson,et al.  Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation , 1993, The Journal of cell biology.

[52]  B. Deurs,et al.  Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification , 1993, The Journal of cell biology.

[53]  J. Heuser,et al.  Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation , 1989, The Journal of cell biology.

[54]  Richard G. W. Anderson,et al.  Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts , 1983, Cell.

[55]  Ye-Guang Chen Endocytic regulation of TGF-β signaling , 2009, Cell Research.

[56]  Ying E Zhang,et al.  Non-Smad pathways in TGF-β signaling , 2009, Cell Research.

[57]  Y. Henis,et al.  Transforming Growth Factor- Receptors Interact with AP2 by Direct Binding to 2 Subunit , 2002 .