Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory

The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum theory to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness.

[1]  P. Halmos Introduction to Hilbert Space: And the Theory of Spectral Multiplicity , 1998 .

[2]  Georges Chevalier Commutators and decompositions of orthomodular lattices , 1989 .

[3]  S. Bosman Boolean-Valued Models of Set Theory , 2015 .

[4]  Edwin Marsden,et al.  The commutator and solvability in a generalized orthomodular lattice. , 1970 .

[5]  Masanao Ozawa Nonuniqueness of the cardinality attached to homogeneous *-algebras , 1985 .

[6]  Allen Stairs,et al.  Incompleteness, Nonlocality and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics. , 1990 .

[7]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[8]  Masanao Ozawa,et al.  Boolean valued analysis and type I $AW^*$-algebras , 1983 .

[9]  Peter Gibbins,et al.  Particles and Paradoxes: The Limits of Quantum Logic , 1987 .

[10]  Peter Gibbins,et al.  Particles and Paradoxes: The Limits of Quantum Logic. , 1988 .

[11]  G. Takeuti Two Applications of Logic to Mathematics , 1978 .

[12]  S. Holland,et al.  Orthomodularity in infinite dimensions; a theorem of M. Solèr , 1995 .

[13]  Sylvia Pulmannová,et al.  Commutators in Orthomodular Lattices , 1985 .

[14]  Masanao Ozawa Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory (Extended Abstract) , 2014, QPL.

[15]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[16]  Hans Halvorson,et al.  Maximal Beable Subalgebras of Quantum Mechanical Observables , 1999 .

[17]  M. Ozawa Quantum measuring processes of continuous observables , 1984 .

[18]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[19]  E. B. Davies Quantum theory of open systems , 1976 .

[20]  J. Krivine,et al.  Introduction to Axiomatic Set Theory , 1971 .

[21]  Gaisi Takeuti,et al.  Quantum Set Theory , 1981 .

[22]  C. Freund Incompleteness , 1888, The Hospital.

[23]  Masanao Ozawa Uncertainty relations for noise and disturbance in generalized quantum measurements , 2003 .

[24]  C. Luther,et al.  INDEPENDENCE OF THE CONTINUUM HYPOTHESIS , 2009 .

[25]  Mary Tiles BOOLEAN-VALUED MODELS AND INDEPENDENCE PROOFS IN SET THEORY , 1979 .

[26]  Gaisi Takeuti C*-algebras and Boolean valued analysis , 1983 .

[27]  M. Redhead,et al.  Incompleteness, Nonlocality, and Realism: A Prolegomenon to thePhilosophy of Quantum Mechanics , 1989 .

[28]  Kazuya Okamura,et al.  Measurement theory in local quantum physics , 2015, 1501.00239.

[29]  Masanao Ozawa,et al.  Universal Uncertainty Principle, Simultaneous Measurability, and Weak Values , 2011, 1106.5083.

[30]  P. J. Cohen,et al.  THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Masanao Ozawa Transfer principle in quantum set theory , 2007, J. Symb. Log..

[32]  V. Varadarajan Geometry of quantum theory , 1968 .

[33]  Masanao Ozawa Boolean valued interpretation of Hilbert space theory , 1983 .

[34]  Masanao Ozawa Quantum perfect correlations , 2006 .

[35]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[36]  Masanao Ozawa,et al.  Quantum Reality and Measurement: A Quantum Logical Approach , 2009, 0911.1147.

[37]  Gaisi Takeuti Von Neumann algebras and Boolean valued analysis , 1983 .

[38]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[39]  M. Ozawa A classification of type I $AW^{*}$ algebras and Boolean valued analysis , 1984 .

[40]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[41]  P. J. Cohen Set Theory and the Continuum Hypothesis , 1966 .