Toward organogenesis of artificial creatures

This paper presents a new model for the development of artificial creatures from a single cell. The model aims at providing a more biologically plausible abstraction of the morphogenesis and the specialization process, which the organogenesis follows. It is built upon three main elements: a cellular physics simulation, a simplified cell cycle using an evolved artificial gene regulatory network and a cell specialization mechanism quantifying the ability to perform different functions. As a proof-of-concept, we present a first experiment where the morphology of a multicellular organism is guided by cell weaknesses and efficiency at performing different functions under environmental stress.