Synthesis and Properties of Sub-50-nm Europium Oxide Nanoparticles.

Eu2O3 nanocrystals are synthesized by a colloidal precipitation route in the size range 2-40 nm. The nanocrystals are passivated with a surface layer of trioctyl phosphine oxide (TOPO) in order to eliminate surface recombination effects. When pumped at 254 nm (4f --> 5d transition) the nanocrystals exhibit red luminescence characteristic of 5D0 --> 7Fn Eu3+ transitions within the cubic form of Eu2O3. The efficiency of the luminescence is increased by a factor of five as the particle size drops below 10 nm; it is suggested that confinement of the long lifetime Eu3+ excitation within the nanocrystal is responsible for this effect. Copyright 1999 Academic Press.

[1]  C. Murphy,et al.  The coordination of mono- and diphosphines to the surface of cadmium selenide , 1990 .

[2]  S. Tsutsumi,et al.  Preparation and luminescence characteristics of the europium and terbium complexes incorporated into a silica matrix using a sol–gel method , 1997 .

[3]  Gallagher,et al.  Optical properties of manganese-doped nanocrystals of ZnS. , 1994, Physical review letters.

[4]  T. Hase,et al.  Phosphor materials for cathode-ray tubes , 1990 .

[5]  R. J. Hunter,et al.  Zeta Potential in Colloid Science , 1981 .

[6]  J. R. Peterson,et al.  Study of the phase behavior of Eu2O3 under pressure via luminescence of Eu3 , 1992 .

[7]  Robert A. Satten,et al.  Spectra and energy levels of rare earth ions in crystals , 1968 .

[8]  K. Binnemans,et al.  Optical absorption spectra of in (YGG) , 1997 .

[9]  Marvin J. Weber,et al.  Luminescence Decay by Energy Migration and Transfer: Observation of Diffusion-Limited Relaxation , 1971 .

[10]  Horst Weller,et al.  Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects☆ , 1985 .

[11]  John L. Hutchison,et al.  Structural and optical properties of terbium oxide nanoparticles , 1999 .

[12]  M. Libera,et al.  Size dependent efficiency in Tb doped Y2O3 nanocrystalline phosphor , 1997 .

[13]  Hergen Eilers,et al.  Spectra and dynamics of monoclinic Eu2O3 and Eu3+:Y2O3 nanocrystals , 1997 .

[14]  Norman Herron,et al.  Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties , 1991 .

[15]  R. P. Rao Preparation and Characterization of Fine‐Grain Yttrium‐Based Phosphors by Sol‐Gel Process , 1996 .

[16]  Brian M. Tissue,et al.  Preparation and Fluorescence Spectroscopy of Bulk Monoclinic Eu3+:Y2O3 and Comparison to Eu3+:Y2O3 Nanocrystals , 1998 .

[17]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[18]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[19]  M. Libera,et al.  Variation of Luminescent Efficiency With Size of Doped Nanocrystalline Y203:Tb Phosphor , 1996 .

[20]  J. Krupa,et al.  Luminescence of nanometric scale Y2SiO5:Eu3+ , 1996 .