The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes

[1]  Mian Chin,et al.  Implementation of an aerosol–cloud‐microphysics–radiation coupling into the NASA unified WRF: Simulation results for the 6–7 August 2006 AMMA special observing period , 2014 .

[2]  Di Wu,et al.  Benefits of a 4th Ice Class in the Simulated Radar Reflectivities of Convective Systems Using a Bulk Microphysics Scheme , 2014 .

[3]  E. García‐Ortega,et al.  Hailstorms in southwestern France: Incidence and atmospheric characterization , 2014 .

[4]  Xiaofan Li,et al.  A modified scheme that parameterizes depositional growth of ice crystal: A modeling study of pre-summer torrential rainfall case over Southern China , 2014 .

[5]  Mathew R. Schwaller,et al.  GPM Satellite Simulator over Ground Validation Sites , 2013 .

[6]  Max J. Suarez,et al.  A Solar Radiation Parameterization for Atmospheric Studies , 2013 .

[7]  W. Tao,et al.  The Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze Initiated Precipitation , 2013 .

[8]  Wei-Kuo Tao,et al.  Goddard Cumulus Ensemble (Gce) Model: Application for Understanding Preciptation Processes , 2013 .

[9]  W. Tao Cloud Resolving Modeling , 2013 .

[10]  Michele M. Rienecker,et al.  Precipitation intensity and variation during MC3E: A numerical modeling study , 2013 .

[11]  T. Matsui,et al.  A Comparison of the Water Budgets between Clouds from AMMA and TWP-ICE , 2013 .

[12]  W. Tao,et al.  Comparing the Convective Structure and Microphysics in Two Sahelian Mesoscale Convective Systems: Radar Observations and CRM Simulations , 2013 .

[13]  Fan Ping,et al.  Phase differences between rainfall and its sources in the tropical deep convective regime: A partitioning analysis based on the surface rainfall budget , 2013 .

[14]  Fumito Ito,et al.  Current Status and Future Directions , 2013 .

[15]  Sujay V. Kumar,et al.  The NASA-Goddard Multi-scale Modeling Framework-Land Information System: Global land/atmosphere interaction with resolved convection , 2013, Environ. Model. Softw..

[16]  Pavlos Kollias,et al.  Two distinct modes in one‐day rainfall event during MC3E field campaign: Analyses of disdrometer observations and WRF‐SBM simulation , 2012 .

[17]  Alexander Khain,et al.  Numerical analysis using WRF‐SBM for the cloud microphysical structures in the C3VP field campaign: Impacts of supercooled droplets and resultant riming on snow microphysics , 2012 .

[18]  José Luis Sánchez,et al.  Role of mesoscale factors at the onset of deep convection on hailstorm days and their relation to the synoptic patterns , 2012 .

[19]  Zhanqing Li,et al.  Impact of aerosols on convective clouds and precipitation , 2012, Reviews of Geophysics.

[20]  Ming-Jen Yang,et al.  High-Resolution Numerical Simulation of the Extreme Rainfall Associated with Typhoon Morakot. Part I: Comparing the Impact of Microphysics and PBL Parameterizations with Observations , 2011 .

[21]  W. Tao,et al.  Reducing the Biases in Simulated Radar Reflectivities from a Bulk Microphysics Scheme: Tropical Convective Systems , 2011 .

[22]  H. Brooks,et al.  Ensemble prediction of Mediterranean high-impact events using potential vorticity perturbations. Part I: Comparison against the multiphysics approach , 2011 .

[23]  T. Matsui,et al.  Estimating the Ice Crystal Enhancement Factor in the Tropics , 2011 .

[24]  N. Zhang,et al.  Effects of large-scale forcing and ice clouds on pre-summer heavy rainfall over southern China in June 2008: A partitioning analysis based on surface rainfall budget , 2011 .

[25]  Filipe Aires,et al.  A Tool to Estimate Land‐Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction , 2011 .

[26]  I. Kang,et al.  A bulk mass flux convection scheme for climate model: description and moisture sensitivity , 2011, Climate Dynamics.

[27]  N. Lipzig,et al.  Evaluation of moist processes during intense precipitation in km-scale NWP models using remote sensing and in-situ data: Impact of microphysics size distribution assumptions , 2011 .

[28]  Song-You Hong,et al.  The impact of microphysical schemes on hurricane intensity and track , 2011 .

[29]  P. Bauer,et al.  Satellite Data Simulator Unit: A Multisensor, Multispectral Satellite Simulator Package , 2010 .

[30]  Robert Cifelli,et al.  WRF Simulations of the 20-22 January 2007 Snow Events over Eastern Canada: Comparison with In-Situ and Satellite Observations , 2010 .

[31]  M. D. Petters,et al.  Predicting global atmospheric ice nuclei distributions and their impacts on climate , 2010, Proceedings of the National Academy of Sciences.

[32]  Chang-Hoi Ho,et al.  Space observations of cold-cloud phase change , 2010, Proceedings of the National Academy of Sciences.

[33]  Wei‐Chyung Wang,et al.  Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system , 2010 .

[34]  Shoichi Shige,et al.  Relating convective and stratiform rain to latent heating. , 2010 .

[35]  S. Schubert,et al.  Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective , 2010 .

[36]  Hirohiko Masunaga,et al.  Improving a spectral bin microphysical scheme using TRMM satellite observations , 2010 .

[37]  Wei-Kuo Tao,et al.  Multiscale cloud system modeling , 2009 .

[38]  W. Tao,et al.  A contribution by ice nuclei to global warming , 2009 .

[39]  H. Masunaga,et al.  Evaluation of Long-Term Cloud-Resolving Model Simulations Using Satellite Radiance Observations and Multifrequency Satellite Simulators , 2009 .

[40]  Christa D. Peters-Lidard,et al.  A Modeling and Observational Framework for Diagnosing Local Land–Atmosphere Coupling on Diurnal Time Scales , 2009 .

[41]  J. Penner,et al.  Aerosol effects on liquid‐water path of thin stratocumulus clouds , 2009 .

[42]  D. Randall,et al.  A Multiscale Modeling System: Developments, Applications, and Critical Issues , 2009 .

[43]  W. Tao,et al.  Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part I: Comparisons , 2009 .

[44]  W. Tao,et al.  Sensitivity of a Cloud-Resolving Model to Bulk and Explicit Bin Microphysical Schemes. Part II: Cloud Microphysics and Storm Dynamics Interactions , 2009 .

[45]  Minghua Zhang,et al.  An Indirect Effect of Ice Nuclei on Atmospheric Radiation , 2009 .

[46]  Minghua Zhang,et al.  On the Sensitivity of Atmospheric Ensembles to Cloud Microphysics in Long-Term Cloud-Resolving Model Simulations , 2008 .

[47]  W. Tao,et al.  Representation of 3D heterogeneous cloud fields using copulas: Theory for water clouds , 2008 .

[48]  Wei-Kuo Tao,et al.  A Goddard Multi-Scale Modeling System with Unified Physics , 2008 .

[49]  H. Tomita,et al.  Convectively Coupled Equatorial Waves Simulated on an Aquaplanet in a Global Nonhydrostatic Experiment , 2008 .

[50]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[51]  William R. Cotton,et al.  A Binned Approach to Cloud-Droplet Riming Implemented in a Bulk Microphysics Model , 2008 .

[52]  David A. Randall,et al.  Evaluation of the Simulated Interannual and Subseasonal Variability in an AMIP-Style Simulation Using the CSU Multiscale Modeling Framework , 2008 .

[53]  T. Matsui,et al.  Role of atmospheric aerosol concentration on deep convective precipitation: Cloud‐resolving model simulations , 2007 .

[54]  Minghua Zhang,et al.  Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data , 2007 .

[55]  Chung-Lin Shie,et al.  Parallelization of the NASA Goddard Cumulus Ensemble Model for Massively Parallel Computing , 2007 .

[56]  Jiwen Fan,et al.  Effects of aerosols and relative humidity on cumulus clouds , 2007 .

[57]  Sujay V. Kumar,et al.  High-performance Earth system modeling with NASA/GSFC’s Land Information System , 2007, Innovations in Systems and Software Engineering.

[58]  William S. Olson,et al.  Improving Simulations of Convective Systems from TRMM LBA: Easterly and Westerly Regimes , 2007 .

[59]  W. Tao,et al.  A Study of the Response of Deep Tropical Clouds to Large-Scale Thermodynamic Forcings. Part II: Sensitivities to Microphysics, Radiation, and Surface Fluxes , 2007 .

[60]  Jiwen Fan,et al.  Simulations of cumulus clouds using a spectral microphysics cloud‐resolving model , 2007 .

[61]  W. Tao,et al.  Numerical Studies of Wet versus Dry Soil Regimes in the West African Sahel , 2007 .

[62]  Mitchell W. Moncrieff,et al.  Representing convective organization in prediction models by a hybrid strategy , 2006 .

[63]  Ziad S. Haddad,et al.  Retrieval of Latent Heating from TRMM Measurements , 2006 .

[64]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[65]  Hiroaki Miura,et al.  A climate sensitivity test using a global cloud resolving model under an aqua planet condition , 2005 .

[66]  D. Randall,et al.  Simulations of the Atmospheric General Circulation Using a Cloud-Resolving Model as a Superparameterization of Physical Processes , 2005 .

[67]  Alexander Khain,et al.  Possible Effects of Collisional Breakup on Mixed-Phase Deep Convection Simulated by a Spectral (Bin) Cloud Model , 2005 .

[68]  Judith A. Curry,et al.  A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of arctic clouds , 2005 .

[69]  H. Tomita,et al.  A global cloud‐resolving simulation: Preliminary results from an aqua planet experiment , 2005 .

[70]  Hiroaki Miura,et al.  Development of a global cloud resolving model - a multi-scale structure of tropical convections - , 2005 .

[71]  A. Pokrovsky,et al.  Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II : Sensitivity study , 2004 .

[72]  A. Pokrovsky,et al.  Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications , 2004 .

[73]  J. Simpson,et al.  The Atmospheric Energy Budget and Large-Scale Precipitation Efficiency of Convective Systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-Resolving Model Simulations , 2004 .

[74]  Yangang Liu,et al.  Parameterization of the Autoconversion Process. Part I: Analytical Formulation of the Kessler-Type Parameterizations , 2004 .

[75]  D. Randall,et al.  Stochastic generation of subgrid‐scale cloudy columns for large‐scale models , 2004 .

[76]  A. Holtslag,et al.  Influence of Soil Moisture on Boundary Layer Cloud Development , 2004 .

[77]  William R. Cotton,et al.  A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module Descriptions and Supercell Test Simulations , 2004 .

[78]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[79]  I. Kang,et al.  Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability , 2003 .

[80]  J. Famiglietti,et al.  The Sensitivity of West African Convective Line Water Budgets to Land Cover , 2003 .

[81]  Alexander Khain,et al.  Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model , 2003 .

[82]  W. Cotton,et al.  RAMS 2001: Current status and future directions , 2003 .

[83]  K. D. Beheng,et al.  A double-moment parameterization for simulating autoconversion, accretion and selfcollection , 2001 .

[84]  Fuzhong Weng,et al.  A microwave land emissivity model , 2001 .

[85]  D. Randall,et al.  A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results , 2001 .

[86]  Brian E. Mapes,et al.  Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general , 2001 .

[87]  Xin-Zhong Liang,et al.  A Thermal Infrared Radiation Parameterization for Atmospheric Studies , 2001 .

[88]  R. Pielke Influence of the spatial distribution of vegetation and soils on the prediction of cumulus Convective rainfall , 2001 .

[89]  M. Shapiro,et al.  Collision Efficiency of Drops in a Wide Range of Reynolds Numbers: Effects of Pressure on Spectrum Evolution , 2001 .

[90]  W. Tao,et al.  A parameterization for the triggering of landscape-generated moist convection. Part II: Zero-order and first-order closure , 2001 .

[91]  W. Tao,et al.  Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods , 2001 .

[92]  Mark Pinsky,et al.  Notes on the state-of-the-art numerical modeling of cloud microphysics , 2000 .

[93]  D. Randall,et al.  Diurnal Variability of the Hydrologic Cycle and Radiative Fluxes: Comparisons between Observations and a GCM , 2000 .

[94]  William L. Woodley,et al.  Deep convective clouds with sustained supercooled liquid water down to -37.5 °C , 2000, Nature.

[95]  V. Ramanathan,et al.  Reduction of tropical cloudiness by soot , 2000, Science.

[96]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[97]  Rosenfeld,et al.  Suppression of rain and snow by urban and industrial air pollution , 2000, Science.

[98]  Michael Shapiro,et al.  Stochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow , 2000 .

[99]  Eric A. Smith,et al.  Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products for February 1998 , 2000 .

[100]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[101]  D. Rosenfeld TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall , 1999 .

[102]  Piotr K. Smolarkiewicz,et al.  CRCP: a cloud resolving convection parameterization for modeling the tropical convecting atmosphere , 1999 .

[103]  M. Moncrieff,et al.  A Numerical Study of the Diurnal Cycle of Tropical Oceanic Convection , 1998 .

[104]  K. Lau,et al.  Radiative–Convective Processes in Simulated Diurnal Variations ofTropical Oceanic Convection , 1998 .

[105]  W. Tao,et al.  A Study of Landscape-Generated Deep Moist Convection , 1998 .

[106]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[107]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[108]  K. Lau,et al.  Diurnal Variations in Tropical Oceanic Cumulus Convection during TOGA COARE , 1997 .

[109]  C. Sui,et al.  Mechanisms of Cloud-radiation interaction in the tropics and midlatitudes , 1996 .

[110]  Robert F. Adler,et al.  On the Tropical Rainfall Measuring Mission (TRMM) , 1996 .

[111]  A. Boone,et al.  A Parameterization for Land–Atmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land , 1995 .

[112]  Kuan-Man Xu,et al.  Impact of Interactive Radiative Transfer on the Macroscopic Behavior of Cumulus Ensembles. Part I: Radiation Parameterization and Sensitivity Tests , 1995 .

[113]  G. Vali Freezing Rate Due to Heterogeneous Nucleation , 1994 .

[114]  C. Sui,et al.  Heating, Moisture, and Water Budgets of Tropical and Midlatitude Squall Lines: Comparisons and Sensitivity to Longwave Radiation , 1993 .

[115]  Joanne Simpson,et al.  Goddard Cumulus Enble Model. Part II: Applications for Studying Cloud Precipitating Processes and for NASA TRMM , 1993 .

[116]  Joanne Simpson,et al.  Goddard Cumulus Ensemble Model. Part I: Model Description , 1993 .

[117]  W. Cotton,et al.  New primary ice-nucleation parameterizations in an explicit cloud model , 1992 .

[118]  Joanne Simpson,et al.  Numerical Simulation of a Subtropical Squall Line over the Taiwan Strait , 1991 .

[119]  Harshvardhan,et al.  Diurnal Variability of the Hydrologic Cycle in a General Circulation Model , 1991 .

[120]  W. Tao,et al.  Modeling Study of a Tropical Squall-Type Convective Line , 1989 .

[121]  Robert F. Adler,et al.  A Proposed Tropical Rainfall Measuring Mission (TRMM) Satellite , 1988 .

[122]  R. Rotunno,et al.  A Theory for Strong, Long-Lived Squall Lines , 1988 .

[123]  Joanne Simpson,et al.  Statistical properties of a cloud ensemble - A numerical study , 1987 .

[124]  S. J. Brentnall,et al.  Simulation of the Diurnal Cycle of Outgoing Longwave Radiation with an Atmospheric GCM , 1987 .

[125]  Wei-Kuo Tao,et al.  A Study of the Response of Deep Tropical Clouds to Mesoscale Processes: Three-Dimensional Numerical Experiments , 1986 .

[126]  T. L. Wolfe,et al.  An assessment of the impact of pollution on global cloud albedo , 1984 .

[127]  Peter V. Hobbs,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands , 1984 .

[128]  Joanne Simpson,et al.  Cloud interactions and merging - Numerical simulations , 1984 .

[129]  M. Tiedtke The effect of penetrative cumulus convection on the large-scale flow in a general circulation model , 1984 .

[130]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[131]  W. Hall,et al.  A Detailed Microphysical Model Within a Two-Dimensional Dynamic Framework: Model Description and Preliminary Results , 1980 .

[132]  Y. Ogura,et al.  Response of Tradewind Cumuli to Large-Scale Processes , 1980 .

[133]  W. Tao,et al.  Response of Deep Tropical Cumulus Clouds to Mesoscale Processes , 1980 .

[134]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[135]  W. M. Gray,et al.  Diurnal Variation of Deep Cumulus Convection , 1977 .

[136]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[137]  J. Hallett,et al.  Ice Crystal Concentration in Cumulus Clouds: Influence of the Drop Spectrum , 1974, Science.

[138]  A. B. Long Solutions to the Droplet Collection Equation for Polynomial Kernels , 1974 .

[139]  J. Hallett,et al.  Production of secondary ice particles during the riming process , 1974, Nature.

[140]  J. Warner Observations Relating to Theoretical Models of a Thermal , 1963 .

[141]  E. B. Kraus,et al.  The Diurnal Precipitation Change over the Sea , 1963 .

[142]  B. Vonnegut Experiments with Silver Iodide Smokes in the Natural Atmosphere , 1950 .