Possible use of a Cooper-pair box for low-dose electron microscopy

A transmission electron microscope that takes advantage of superconducting quantum circuitry is proposed. The microscope is designed to improve image contrast of radiation-sensitive weak phase objects, in particular biological specimens. The objective in this setting is to measure the phase shift of the probe electron wave to a precision $\Delta\theta$ within the number of electrons $N$ that does not destroy the specimen. In conventional electron microscopy $\Delta\theta$ scales as $\sim 1/N^{1/2}$, which falls short of the Heisenberg limit $\sim 1/N$. To approach the latter by using quantum entanglement, we propose a design that involves a Cooper pair box placed on the surface of an electrostatic electron mirror in the microscope. Significant improvement could be attained if inelastic scattering processes are sufficiently delocalized.

[1]  Tsuyoshi Matsuda,et al.  Demonstration of single‐electron buildup of an interference pattern , 1989 .

[2]  T. Nagao,et al.  Construction of a high‐resolution electron energy loss spectrometer , 1994 .

[3]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[4]  T. Latychevskaia,et al.  A quantum mechanical scheme to reduce radiation damage in electron microscopy , 2015, 1506.07215.

[5]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[6]  L Frunzio,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[7]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[8]  D. Muller,et al.  Delocalization in inelastic scattering , 1995 .

[9]  H. Lichte Performance limits of electron holography. , 2008, Ultramicroscopy.

[10]  U Aebi,et al.  Determination of the inelastic mean free path of electrons in vitrified ice layers for on‐line thickness measurements by zero‐loss imaging , 1999, Journal of microscopy.

[11]  R. Glaeser,et al.  Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review , 1978, Journal of microscopy.

[12]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[13]  J Frank,et al.  Averaging of low exposure electron micrographs of non-periodic objects. , 1975, Ultramicroscopy.

[14]  R. Egerton Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. , 2007, Ultramicroscopy.

[15]  A. Rose,et al.  Vision: human and electronic , 1973 .

[16]  K. Nagayama,et al.  Transmission electron microscopy with Zernike phase plate. , 2001, Ultramicroscopy.

[17]  H. Okamoto Adaptive quantum measurement for low-dose electron microscopy , 2010 .

[18]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[19]  O. Krivanek,et al.  High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  J. Dubochet,et al.  Cryo-electron microscopy of viruses , 1984, Nature.

[21]  Rudolf M. Tromp,et al.  Low-Energy Electron Microscopy , 1994, IBM J. Res. Dev..

[22]  Noise suppression by active optics in low-dose electron microscopy , 2008 .

[23]  V. Lobastov,et al.  Four-dimensional ultrafast electron microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[25]  C. Helstrom Quantum detection and estimation theory , 1969 .

[26]  L. Vaidman,et al.  Quantum mechanical interaction-free measurements , 1993, hep-th/9305002.

[27]  Wah Chiu,et al.  Cryo-EM of macromolecular assemblies at near-atomic resolution , 2010, Nature Protocols.

[28]  Bernd Kabius,et al.  Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope , 1998 .

[29]  H. Rose,et al.  Correction properties of electron mirrors , 1997 .

[30]  K. Downing,et al.  Design of a microfabricated, two-electrode phase-contrast element suitable for electron microscopy. , 2006, Ultramicroscopy.

[31]  Z. Zhou,et al.  3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy , 2008, Nature.

[32]  Ondrej L. Krivanek,et al.  Towards sub-Å electron beams , 1999 .

[33]  R. Schröder,et al.  Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. , 2007, Ultramicroscopy.

[34]  H. Padmore,et al.  Simulation of a mirror corrector for PEEM3 , 2004 .

[35]  O. Bostanjoglo,et al.  Electron mirror observation of superconductors in the intermediate state , 1967 .

[36]  Denis Vion,et al.  Single-shot qubit readout in circuit quantum electrodynamics , 2009, 1005.5615.

[37]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[38]  M. Yanik,et al.  Noninvasive electron microscopy with interaction-free quantum measurements , 2009 .

[39]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[40]  Herzog,et al.  Interaction-free measurement. , 1995, Physical review letters.