Kirchhoff modeling, inversion for reflectivity, and subsurface illumination

Because of its computational efficiency, prestack Kirchhoff depth migration is currently one of the most popular algorithms used in 2-D and 3-D subsurface depth imaging. Nevertheless, Kirchhoff algorithms in their typical implementation produce less than ideal results in complex terranes where multipathing from the surface to a given image point may occur, and beneath fast carbonates, salt, or volcanics through which ray‐theoretical energy cannot penetrate to illuminate underlying slower‐velocity sediments. To evaluate the likely effectiveness of a proposed seismic‐acquisition program, we could perform a forward‐modeling study, but this can be expensive. We show how Kirchhoff modeling can be defined as the mathematical transpose of Kirchhoff migration. The resulting Kirchhoff modeling algorithm has the same low computational cost as Kirchhoff migration and, unlike expensive full acoustic or elastic wave‐equation methods, only models the events that Kirchhoff migration can image. Kirchhoff modeling is also...

[1]  Imaging of offset VSP data with an elastic iterative migration scheme , 1997 .

[2]  S. Gray,et al.  Kirchhoff migration using eikonal equation traveltimes , 1994 .

[3]  R. Clayton,et al.  An iterative inversion of back‐scattered acoustic waves , 1988 .

[4]  N. Bleistein On the imaging of reflectors in the earth , 1987 .

[5]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[6]  Lúcio T. Santos,et al.  Seismic modeling by demigration , 2000 .

[7]  Bertrand Duquet,et al.  A new imaging technique for reliable migration velocity analysis , 1994 .

[8]  Samuel H. Gray,et al.  True-amplitude seismic migration: A comparison of three approaches , 1997 .

[9]  L. Gilles,et al.  Parameterization study for acoustic and elastic ray+Born inversion , 1997 .

[10]  William W. Symes,et al.  Global solution of a linearized inverse problem for the wave equation , 1997 .

[11]  Kamal M. Al-Yahya,et al.  Velocity analysis by iterative profile migration , 1987 .

[12]  Bertrand Duquet,et al.  Filtering coherent noise during prestack depth migration , 1999 .

[13]  Efficient 2.5-D true‐amplitude migration , 1999 .

[14]  William W. Symes,et al.  Velocity inversion by differential semblance optimization , 1991 .

[15]  D. Nichols,et al.  Dealiasing DMO: Good-pass, Bad-pass, And Unconstrained , 1995 .

[16]  Jon F. Claerbout,et al.  Imaging the Earth's Interior , 1985 .

[17]  John R. Berryhill,et al.  Wave-equation datuming , 1979 .

[18]  J. Virieux,et al.  Iterative asymptotic inversion in the acoustic approximation , 1992 .

[19]  P. Hubral,et al.  True amplitude migration of 2D synthetic data , 1992 .

[20]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[21]  N. D. Whitmore,et al.  Two-dimensional post-stack depth migration: a survey of methods , 1988 .

[22]  G. Schuster,et al.  Least-squares migration of incomplete reflection data , 1999 .

[23]  Piero Sguazzero,et al.  Migration of seismic data by phase-shift plus interpolation: Geophysics , 1984 .

[24]  W. Beydoun,et al.  Elastic Ray‐Born L2‐Migration/Inversion , 1989 .