Modeling score distributions in information retrieval
暂无分享,去创建一个
[1] Yoram Singer,et al. An Efficient Boosting Algorithm for Combining Preferences by , 2013 .
[2] C. J. van Rijsbergen,et al. Probabilistic models of information retrieval based on measuring the divergence from randomness , 2002, TOIS.
[3] Avi Arampatzis,et al. Where to Stop Reading a Ranked List? , 2008, TREC.
[4] Robert Krovetz,et al. Viewing morphology as an inference process , 1993, Artif. Intell..
[5] Evangelos Kanoulas,et al. Score distribution models: assumptions, intuition, and robustness to score manipulation , 2010, SIGIR.
[6] Stephen E. Robertson,et al. Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..
[7] Avi Arampatzis,et al. A signal-to-noise approach to score normalization , 2009, CIKM.
[8] R. Manmatha,et al. Modeling score distributions for combining the outputs of search engines , 2001, SIGIR '01.
[9] Edward A. Fox,et al. Combination of Multiple Searches , 1993, TREC.
[10] Stephen E. Robertson,et al. On Score Distributions and Relevance , 2007, ECIR.
[11] Avi Arampatzis,et al. Unbiased S-D Threshold Optimization, Initial Query Degradation, Decay, and Incrementality, for Adaptive Document Filtering , 2001, TREC.
[12] Pablo Castells,et al. Using historical data to enhance rank aggregation , 2006, SIGIR '06.
[13] Avi Arampatzis,et al. Incrementality, Half-life, and Threshold Optimization for Adaptive Document Filtering , 2000, TREC.
[14] C. J. van Rijsbergen,et al. Probabilistic Retrieval Revisited , 1992, Comput. J..
[15] Prasenjit Mitra,et al. Query suggestions in the absence of query logs , 2011, SIGIR.
[16] Abraham Bookstein,et al. When the most "pertinent" document should not be retrieved - An analysis of the Swets model , 1977, Inf. Process. Manag..
[17] Emine Yilmaz,et al. Inferring document relevance from incomplete information , 2007, CIKM '07.
[18] Norbert Fuhr,et al. From Uncertain Inference to Probability of Relevance for Advanced IR Applications , 2003, ECIR.
[19] W. Bruce Croft,et al. Search Engines - Information Retrieval in Practice , 2009 .
[20] Stephen E. Robertson,et al. Where to stop reading a ranked list?: threshold optimization using truncated score distributions , 2009, SIGIR.
[21] Ronan Cummins,et al. Measuring the Ability of Score Distributions to Model Relevance , 2011, AIRS.
[22] S. C. Choi,et al. Maximum Likelihood Estimation of the Parameters of the Gamma Distribution and Their Bias , 1969 .
[23] Fredric C. Gey,et al. Probabilistic retrieval based on staged logistic regression , 1992, SIGIR '92.
[24] Ellen M. Voorhees,et al. Evaluation by highly relevant documents , 2001, SIGIR '01.
[25] Robert V. Brill,et al. Applied Statistics and Probability for Engineers , 2004, Technometrics.
[26] Gregory N. Hullender,et al. Learning to rank using gradient descent , 2005, ICML.
[27] Yi Zhang,et al. Maximum likelihood estimation for filtering thresholds , 2001, SIGIR '01.
[28] Norbert Fuhr,et al. Probalistic Learning Approaches for Indexing and Retrieval with the TREC-2 Collection , 1993, TREC.
[29] Emine Yilmaz,et al. The maximum entropy method for analyzing retrieval measures , 2005, SIGIR '05.
[30] Avi Arampatzis,et al. The score-distributional threshold optimization for adaptive binary classification tasks , 2001, SIGIR '01.
[31] G. Celeux,et al. An entropy criterion for assessing the number of clusters in a mixture model , 1996 .
[32] M. Neuts,et al. On mixtures of χ2- andF-distributions which yield distributions of the same family , 1967 .
[33] S. Robertson. The probability ranking principle in IR , 1997 .
[34] Mark Sanderson,et al. Quantifying test collection quality based on the consistency of relevance judgements , 2011, SIGIR.
[35] Stephen Robertson,et al. Statistical problems in the application of probabilistic models to information retrieval , 1982 .
[36] Falk Scholer,et al. Modelling disagreement between judges for information retrieval system evaluation , 2009 .
[37] Hagai Attias,et al. Inferring Parameters and Structure of Latent Variable Models by Variational Bayes , 1999, UAI.
[38] Stephen E. Robertson,et al. Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.
[39] Stephen E. Robertson. The probabilistic character of relevance , 1977, Inf. Process. Manag..
[40] M. de Rijke,et al. Combination Methods for Crosslingual Web Retrieval , 2005, CLEF.
[41] Alexander Dekhtyar,et al. Information Retrieval , 2018, Lecture Notes in Computer Science.
[42] José Luis Vicedo González,et al. TREC: Experiment and evaluation in information retrieval , 2007, J. Assoc. Inf. Sci. Technol..
[43] Christoph Baumgarten,et al. A probabilistic solution to the selection and fusion problem in distributed information retrieval , 1999, SIGIR '99.
[44] Jong-Hak Lee,et al. Analyses of multiple evidence combination , 1997, SIGIR '97.
[45] Mark Sanderson,et al. Relevance judgments between TREC and Non-TREC assessors , 2008, SIGIR '08.
[46] Michael McGill,et al. Introduction to Modern Information Retrieval , 1983 .
[47] Stephen E. Robertson,et al. Threshold setting in adaptive filtering , 2000, J. Documentation.
[48] Donna K. Harman,et al. Overview of the Third Text REtrieval Conference (TREC-3) , 1995, TREC.
[49] Christoph Baumgarten,et al. Probabilistic information retrieval in a distributed heterogeneous environment , 1998 .
[50] Donna K. Harman,et al. Overview of the Ninth Text REtrieval Conference (TREC-9) , 2000, TREC.
[51] Jaana Kekäläinen,et al. Cumulated gain-based evaluation of IR techniques , 2002, TOIS.
[52] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[53] Yoshua Bengio,et al. Pattern Recognition and Neural Networks , 1995 .
[54] Michael P. Wiper,et al. Mixtures of Gamma Distributions With Applications , 2001 .
[55] Gerald J. Kowalski,et al. Information Retrieval Systems , 1997, The Information Retrieval Series.
[56] Pablo Castells,et al. Probabilistic Score Normalization for Rank Aggregation , 2006, ECIR.
[57] Avi Arampatzis,et al. Document Filtering as an Adaptive and Temporally-dependent Process , 2001 .
[58] Morris Rubinoff,et al. Statistical generation of a technical vocabulary , 1968 .
[59] William S. Cooper,et al. Some inconsistencies and misnomers in probabilistic information retrieval , 1991, SIGIR '91.
[60] John A. Swets,et al. Effectiveness of information retrieval methods , 1969 .
[61] David D. Lewis,et al. Evaluating and optimizing autonomous text classification systems , 1995, SIGIR '95.
[62] Thorsten Joachims,et al. Training linear SVMs in linear time , 2006, KDD '06.
[63] Ellen M. Voorhees,et al. Overview of the seventh text retrieval conference (trec-7) [on-line] , 1999 .
[64] David R. Cox. The analysis of binary data , 1970 .
[65] Stephen E. Robertson,et al. On Collection Size and Retrieval Effectiveness , 2004, Information Retrieval.
[66] Fred J. Damerau,et al. An experiment in automatic indexing , 1965 .
[67] Stephen E. Robertson,et al. Relevance weighting for query independent evidence , 2005, SIGIR '05.
[68] Ronan Cummins,et al. Predicting Query Performance Directly from Score Distributions , 2011, AIRS.
[69] Emine Yilmaz,et al. A geometric interpretation of r-precision and its correlation with average precision , 2005, SIGIR '05.
[70] Kevyn Collins-Thompson,et al. Information Filtering, Novelty Detection, and Named-Page Finding , 2002, TREC.
[71] Jamie Callan,et al. DISTRIBUTED INFORMATION RETRIEVAL , 2002 .
[72] A. T. Arampatzis,et al. Adaptive and temporally-dependent document filtering , 2001 .
[73] Djoerd Hiemstra,et al. Using language models for information retrieval , 2001 .
[74] Cyril Cleverdon,et al. The Cranfield tests on index language devices , 1997 .
[75] Ellen M. Voorhees,et al. TREC: Experiment and Evaluation in Information Retrieval (Digital Libraries and Electronic Publishing) , 2005 .
[76] Douglas W. Oard,et al. Overview of the TREC 2008 Legal Track , 2008, TREC.
[77] Ondrej Lhoták,et al. Estimating precision by random sampling (poster abstract) , 1999, SIGIR '99.
[78] Lu Wang,et al. Clustering query refinements by user intent , 2010, WWW '10.
[79] Gianni Amati,et al. Probability models for information retrieval based on divergence from randomness , 2003 .
[80] Stephen P. Harter,et al. A probabilistic approach to automatic keyword indexing. Part I. On the Distribution of Specialty Words in a Technical Literature , 1975, J. Am. Soc. Inf. Sci..
[81] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[82] Jacques Savoy,et al. Report on CLEF-2003 Multilingual Tracks , 2003, CLEF.
[83] Javed A. Aslam,et al. Modeling score distributions for information retrieval , 2012 .
[84] Martin F. Porter,et al. An algorithm for suffix stripping , 1997, Program.
[85] Stephen E. Robertson,et al. GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .
[86] Hagai Attias,et al. A Variational Bayesian Framework for Graphical Models , 1999 .
[87] Evangelos Kanoulas,et al. Modeling the Score Distributions of Relevant and Non-relevant Documents , 2009, ICTIR.
[88] Don R. Swanson,et al. Probabilistic models for automatic indexing , 1974, J. Am. Soc. Inf. Sci..
[89] Fabrizio Silvestri,et al. Mining Query Logs: Turning Search Usage Data into Knowledge , 2010, Found. Trends Inf. Retr..
[90] Stephen E. Robertson,et al. THE PARAMETRIC DESCRIPTION OF RETRIEVAL TESTS: PART I: THE BASIC PARAMETERS , 1969 .
[91] Peter Bailey,et al. Engineering a multi-purpose test collection for Web retrieval experiments , 2003, Inf. Process. Manag..
[92] Ellen M. Voorhees,et al. The Philosophy of Information Retrieval Evaluation , 2001, CLEF.
[93] Paul N. Bennett. Using asymmetric distributions to improve text classifier probability estimates , 2003, SIGIR.
[94] P. Green,et al. Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .
[95] Fredric C. Gey,et al. Experiments in the Probabilistic Retrieval of Full Text Documents , 1994, TREC.
[96] Evangelos Kanoulas,et al. Extended Expectation Maximization for Inferring Score Distributions , 2012, ECIR.
[97] Wessel Kraaij,et al. A Language Modeling Approach to Tracking News Events , 2000 .
[98] Emine Yilmaz,et al. A geometric interpretation and analysis of R-precision , 2005, CIKM '05.
[99] Evangelos Kanoulas,et al. Variational bayes for modeling score distributions , 2011, Information Retrieval.