Analysis and Design of Low-Power Continuous-Time Delta-Sigma Modulator Using Negative-R Assisted Integrator

The opamp in the integrators of a continuous-time delta-sigma modulator (CTDSM) has stringent noise and linearity requirements, which lead to large power dissipation. In this paper, a <italic>negative-R assisted integrator</italic> is proposed to mitigate the opamp’s requirements including dc gain, unity gain bandwidth, thermal and 1/<inline-formula> <tex-math notation="LaTeX">${f}$ </tex-math></inline-formula> noise, and linearity, thus enabling a drastic power reduction. We present two prototype CTDSMs using the negative-R assisted integrators that employ a single-bit and tri-level feedback digital-to-analog converter (DAC), respectively. The prototype CTDSMs were fabricated in 65-nm CMOS technology. The first CTDSM using a single-bit feedback DAC achieves dynamic range (DR)/signal to noise and distortion ratio (SNDR)/spurious-free dynamic range (SFDR) of 93.1/88.5/100.5 dB in a 20-kHz bandwidth while dissipating only 55 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> from a 1.2-V supply. The second CTDSM, with a tri-level feedback DAC, achieves DR/SNDR/SFDR of 98.2/94.1/107 dB in a 24-kHz bandwidth while dissipating only 68 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> from a 1.2-V supply. The figures of merit of the two CTDSMs are 178.7 and 183.6 dB, respectively, which are the best energy efficiency among state-of-the-art works.

[1]  Yong Lian,et al.  A 0.6-V 82-dB 28.6- W Continuous-Time , 2011 .

[2]  Sujith Billa,et al.  Analysis and Design of Continuous-Time Delta–Sigma Converters Incorporating Chopping , 2017, IEEE Journal of Solid-State Circuits.

[3]  Andrew Adams,et al.  A 10/20/30/40 MHz feed-forward FIR DAC continuous-time ΔΣ ADC with robust blocker performance for radio receivers , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[4]  Nan Sun,et al.  A 174.3-dB FoM VCO-Based CT $\Delta \Sigma $ Modulator With a Fully-Digital Phase Extended Quantizer and Tri-Level Resistor DAC in 130-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[5]  Shanthi Pavan,et al.  Design Techniques for Wideband Single-Bit Continuous-Time $\Delta\Sigma$ Modulators With FIR Feedback DACs , 2012, IEEE Journal of Solid-State Circuits.

[6]  Chun-Cheng Liu,et al.  A 0.022 mm$^{{2}}$ 98.5 dB SNDR Hybrid Audio $\Delta \Sigma$ Modulator With Digital ELD Compensation in 28 nm CMOS , 2015, IEEE Journal of Solid-State Circuits.

[7]  Youngcheol Chae,et al.  A 1.2V 68µW 98.2DB-DR Audio Continuous-Time Delta-Sigma Modulator , 2018, 2018 IEEE Symposium on VLSI Circuits.

[8]  Robert Weigel,et al.  A 0.039 mm$^2$ Inverter-Based 1.82 mW 68.6$~$ dB-SNDR 10 MHz-BW CT-$\Sigma\Delta$ -ADC in 65 nm CMOS Using Power- and Area-Efficient Design Techniques , 2014, IEEE Journal of Solid-State Circuits.

[9]  Shanthi Pavan,et al.  A Power Optimized Continuous-Time $\Delta \Sigma $ ADC for Audio Applications , 2008, IEEE Journal of Solid-State Circuits.

[10]  Howard Tang,et al.  A 1 V 103 dB 3rd-Order Audio Continuous-Time $\Delta \Sigma $ ADC With Enhanced Noise Shaping in 65 nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[11]  Sejun Kim,et al.  A 2.4mW, 111dB SNR continuous-time ΣΔ ADC with a three-level DEM technique , 2017, 2017 IEEE Custom Integrated Circuits Conference (CICC).

[12]  N. Boutin,et al.  Active compensation of op-amp inverting amplifier using NIC , 1981 .

[13]  G.C. Temes,et al.  A 0.9 V 92 dB Double-Sampled Switched-RC Delta-Sigma Audio ADC , 2008, IEEE Journal of Solid-State Circuits.

[14]  Wen-Chieh Wang,et al.  A 0.0004% (−108dB) THD+N, 112dB-SNR, 3.15W fully differential Class-D audio amplifier with Gm noise cancellation and negative output-common-mode injection techniques , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[15]  Andrew Adams,et al.  A 10/20/30/40 MHz Feedforward FIR DAC Continuous-Time $\Delta\Sigma$ ADC With Robust Blocker Performance for Radio Receivers , 2016, IEEE Journal of Solid-State Circuits.

[16]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[17]  Amrith Sukumaran,et al.  Low Power Design Techniques for Single-Bit Audio Continuous-Time Delta Sigma ADCs Using FIR Feedback , 2014, IEEE Journal of Solid-State Circuits.

[18]  Shanthi Pavan,et al.  Power Reduction in Continuous-Time Delta-Sigma Modulators Using the Assisted Opamp Technique , 2010, IEEE Journal of Solid-State Circuits.

[19]  Gunhee Han,et al.  A 2 mW, 50 dB DR, 10 MHz BW 5 $\times$ Interleaved Bandpass Delta-Sigma Modulator at 50 MHz IF , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Andrea Baschirotto,et al.  A 106 dB A-Weighted DR Low-Power Continuous-Time $\Sigma \Delta $ Modulator for MEMS Microphones , 2016, IEEE Journal of Solid-State Circuits.

[21]  Youngcheol Chae,et al.  A 55μW 93.1dB-DR 20kHz-BW single-bit CT ΔΣ modulator with negative R-assisted integrator achieving 178.7dB FoM in 65nm CMOS , 2017, 2017 Symposium on VLSI Circuits.

[22]  Maurits Ortmanns,et al.  Continuous time sigma-delta A/D conversion : fundamentals, performance limits and robust implementations , 2006 .

[23]  K. Nguyen,et al.  A 106-dB SNR hybrid oversampling analog-to-digital converter for digital audio , 2005, IEEE Journal of Solid-State Circuits.

[24]  Eric A. M. Klumperink,et al.  Cancellation of OpAmp Virtual Ground Imperfections by a Negative Conductance Applied to Improve RF Receiver Linearity , 2014, IEEE Journal of Solid-State Circuits.

[25]  Shanthi Pavan Alias Rejection of Continuous-Time Modulators With Switched-Capacitor Feedback DACs , 2011 .

[26]  W. Martin Snelgrove,et al.  A low-power Gm-C-based CT-ΔΣ audio-band ADC in 1.1V 65nm CMOS , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).