Using a Classifier Fusion Strategy to Identify Anti-angiogenic Peptides

[1]  Yan Zhao,et al.  ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction , 2018, RNA biology.

[2]  Xing Chen,et al.  EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction , 2018, Cell Death & Disease.

[3]  Xing Chen,et al.  LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction , 2017, PLoS Comput. Biol..

[4]  Xing Chen,et al.  PSPEL: In Silico Prediction of Self-Interacting Proteins from Amino Acids Sequences Using Ensemble Learning , 2017, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[5]  Zhu-Hong You,et al.  An ensemble approach for large-scale identification of protein-protein interactions using the alignments of multiple sequences , 2016, Oncotarget.

[6]  Abhigyan Nath,et al.  Maximizing lipocalin prediction through balanced and diversified training set and decision fusion , 2015, Comput. Biol. Chem..

[7]  N. Yang,et al.  The anti-angiogenic action of 2-deoxyglucose involves attenuation of VEGFR2 signaling and MMP-2 expression in HUVECs. , 2015, Life sciences.

[8]  S. Venkatesan,et al.  AntiAngioPred: A Server for Prediction of Anti-Angiogenic Peptides , 2015, PloS one.

[9]  Yong Song,et al.  Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs , 2015, Oncotarget.

[10]  David Cornforth,et al.  Using Support Vector Machine Ensembles for Target Audience Classification on Twitter , 2015, PloS one.

[11]  Changchuan Yin,et al.  A new method to cluster DNA sequences using Fourier power spectrum , 2015, Journal of Theoretical Biology.

[12]  O. Bang,et al.  An evaluation of the anti-angiogenic effect of the Korean medicinal formula “Sa-mi-yeon-geon-tang” in vitro and in ovo , 2015, BMC Complementary and Alternative Medicine.

[13]  Jiangning Song,et al.  Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices. , 2015, Molecular bioSystems.

[14]  Laura Mariani,et al.  The zebrafish/tumor xenograft angiogenesis assay as a tool for screening anti-angiogenic miRNAs , 2015, Cytotechnology.

[15]  Xuan Xiao,et al.  NRPred-FS: A Feature Selection based Two-level Predictor for NuclearReceptors , 2014 .

[16]  Geoffrey I. Webb,et al.  Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features , 2014, Scientific Reports.

[17]  Wei Chen,et al.  Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis. , 2014, Molecular bioSystems.

[18]  K. Chou,et al.  iCTX-Type: A Sequence-Based Predictor for Identifying the Types of Conotoxins in Targeting Ion Channels , 2014, BioMed research international.

[19]  Q. Zou,et al.  enDNA-Prot: Identification of DNA-Binding Proteins by Applying Ensemble Learning , 2014, BioMed research international.

[20]  Chaochun Wei,et al.  LAceP: Lysine Acetylation Site Prediction Using Logistic Regression Classifiers , 2014, PloS one.

[21]  Bo Jiang,et al.  Sequence Based Prediction of DNA-Binding Proteins Based on Hybrid Feature Selection Using Random Forest and Gaussian Naïve Bayes , 2014, PloS one.

[22]  Asifullah Khan,et al.  IDM-PhyChm-Ens: Intelligent decision-making ensemble methodology for classification of human breast cancer using physicochemical properties of amino acids , 2014, Amino Acids.

[23]  Babita Majhi,et al.  Prediction of Protein Structural Class by Functional Link Artificial Neural Network Using Hybrid Feature Extraction Method , 2013, SEMCCO.

[24]  Hui Ding,et al.  Prediction of the types of ion channel-targeted conotoxins based on radial basis function network. , 2013, Toxicology in vitro : an international journal published in association with BIBRA.

[25]  Honglin Li,et al.  An improved sequence based prediction protocol for DNA-binding proteins using SVM and comprehensive feature analysis , 2013, BMC Bioinformatics.

[26]  Claudio Cobelli,et al.  Bag of Naïve Bayes: biomarker selection and classification from genome-wide SNP data , 2012, BMC Bioinformatics.

[27]  Vincent W. Li,et al.  Cancer prevention by targeting angiogenesis , 2012, Nature Reviews Clinical Oncology.

[28]  H. Dvorak,et al.  Concordant release of glycolysis proteins into the plasma preceding a diagnosis of ER+ breast cancer. , 2012, Cancer research.

[29]  Shao-Ping Shi,et al.  PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. , 2012, Molecular bioSystems.

[30]  Johan Vansteenkiste,et al.  Randomized phase II study of three doses of the integrin inhibitor cilengitide versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer , 2009, Investigational New Drugs.

[31]  Hao Yu,et al.  Advantages of Radial Basis Function Networks for Dynamic System Design , 2011, IEEE Transactions on Industrial Electronics.

[32]  Aleksander S Popel,et al.  Anti-angiogenic peptides for cancer therapeutics. , 2011, Current pharmaceutical biotechnology.

[33]  Michael Schroeder,et al.  MetaDBSite: a meta approach to improve protein DNA-binding sites prediction , 2011, BMC Systems Biology.

[34]  W. Li,et al.  Hybrid approaches to attribute reduction based on indiscernibility and discernibility relation , 2011, Int. J. Approx. Reason..

[35]  K. Chou Some remarks on protein attribute prediction and pseudo amino acid composition , 2010, Journal of Theoretical Biology.

[36]  Ganapati Panda,et al.  A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction , 2010, Comput. Biol. Chem..

[37]  Kenji Mizuguchi,et al.  Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites , 2010, Bioinform..

[38]  Yufeng Tian,et al.  Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors , 2010, Molecular Cancer.

[39]  Emmanouil D Karagiannis,et al.  Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model , 2010, BMC Cancer.

[40]  Lior Rokach,et al.  Ensemble-based classifiers , 2010, Artificial Intelligence Review.

[41]  Gajendra P.S. Raghava,et al.  RSLpred: an integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information , 2009, Proteomics.

[42]  J. Niewiarowska,et al.  [Mechanisms of cancer angiogenesis]. , 2009, Postepy higieny i medycyny doswiadczalnej.

[43]  Dong Xu,et al.  Computational Identification of Protein Methylation Sites through Bi-Profile Bayes Feature Extraction , 2009, PloS one.

[44]  Hui Zhao,et al.  A novel peptide from human apolipoprotein(a) inhibits angiogenesis and tumor growth by targeting c‐Src phosphorylation in VEGF‐induced human umbilical endothelial cells , 2009, International journal of cancer.

[45]  Somnuk Phon-Amnuaisuk,et al.  Enhancing Protein Fold Prediction Accuracy Using an Ensemble of Different Classifiers , 2009, Aust. J. Intell. Inf. Process. Syst..

[46]  B. Park,et al.  Choice of neighbor order in nearest-neighbor classification , 2008, 0810.5276.

[47]  Emmanouil D Karagiannis,et al.  A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells , 2008, Proceedings of the National Academy of Sciences.

[48]  Mark Johnson,et al.  NCBI BLAST: a better web interface , 2008, Nucleic Acids Res..

[49]  K. Chou,et al.  Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms , 2008, Nature Protocols.

[50]  K. Chou,et al.  Recent progress in protein subcellular location prediction. , 2007, Analytical biochemistry.

[51]  R. Ge,et al.  Developing antiangiogenic peptide drugs for angiogenesis-related diseases. , 2007, Current pharmaceutical design.

[52]  Yijun Sun,et al.  Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  J. Folkman Opinion: Angiogenesis: an organizing principle for drug discovery? , 2007, Nature Reviews Drug Discovery.

[54]  Tongliang Zhang,et al.  Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes , 2007, Amino Acids.

[55]  Ganapati Panda,et al.  Fault classification and location using HS-transform and radial basis function neural network , 2006 .

[56]  P. K. Dashb,et al.  Fault classification and location using HS-transform and radial basis function neural network , 2006 .

[57]  E Ruoslahti,et al.  Vascular homing peptides with cell-penetrating properties. , 2005, Current pharmaceutical design.

[58]  Kunio Matsumoto,et al.  Angiogenesis inhibitors: from laboratory to clinical application. , 2005, Biochemical and biophysical research communications.

[59]  Chryso Kanthou,et al.  Disrupting tumour blood vessels , 2005, Nature Reviews Cancer.

[60]  Keryn A Williams,et al.  Inhibitors of ocular neovascularization: promises and potential problems. , 2005, JAMA.

[61]  B. Schneider,et al.  Angiogenesis of breast cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[62]  C. Soria,et al.  Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP , 2005, Journal of Cell Science.

[63]  Ian H. Witten,et al.  Data mining in bioinformatics using Weka , 2004, Bioinform..

[64]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[65]  Arjan W. Griffioen,et al.  Discovery and development of anti-angiogenic peptides: A structural link , 2004, Angiogenesis.

[66]  C. Y. Peng,et al.  An Introduction to Logistic Regression Analysis and Reporting , 2002 .

[67]  P. Carmeliet Mechanisms of angiogenesis and arteriogenesis , 2000, Nature Medicine.

[68]  Michael Gribskov,et al.  Use of Receiver Operating Characteristic (ROC) Analysis to Evaluate Sequence Matching , 1996, Comput. Chem..

[69]  I. Muchnik,et al.  Prediction of protein folding class using global description of amino acid sequence. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[70]  K. Chou,et al.  Prediction of protein structural classes. , 1995, Critical reviews in biochemistry and molecular biology.

[71]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[72]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..