Exploitation of environmental constraints in human and robotic grasping

We investigate the premise that robust grasping performance is enabled by exploiting constraints present in the environment. These constraints, leveraged through motion in contact, counteract uncertainty in state variables relevant to grasp success. Given this premise, grasping becomes a process of successive exploitation of environmental constraints, until a successful grasp has been established. We present support for this view found through the analysis of human grasp behavior and by showing robust robotic grasping based on constraint-exploiting grasp strategies. Furthermore, we show that it is possible to design robotic hands with inherent capabilities for the exploitation of environmental constraints.

[1]  Yoji Umetani,et al.  The Development of Soft Gripper for the Versatile Robot Hand , 1978 .

[2]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[3]  Matthew T. Mason,et al.  The mechanics of manipulation , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[4]  Matthew T. Mason,et al.  An exploration of sensorless manipulation , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[5]  Randy C. Brost,et al.  Automatic Grasp Planning in the Presence of Uncertainty , 1988, Int. J. Robotics Res..

[6]  Mark R. Cutkosky,et al.  On grasp choice, grasp models, and the design of hands for manufacturing tasks , 1989, IEEE Trans. Robotics Autom..

[7]  Michael Caine The design of shape interactions using motion constraints , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[8]  Ivan Toni,et al.  Tactile input of the hand and the control of reaching to grasp movements , 1997, Experimental Brain Research.

[9]  J. F. Soechting,et al.  Postural Hand Synergies for Tool Use , 1998, The Journal of Neuroscience.

[10]  Haruhisa Kawasaki,et al.  Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[11]  Yanqing Wang,et al.  The role of contextual haptic and visual constraints on object manipulation in virtual environments , 2000, CHI.

[12]  Toshio Tsuji,et al.  Scale-dependent grasp , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[13]  Yasumichi Aiyama,et al.  Planning of graspless manipulation by multiple robot fingers , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[14]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[15]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[16]  Marco Santello,et al.  Patterns of Hand Motion during Grasping and the Influence of Sensory Guidance , 2002, The Journal of Neuroscience.

[17]  Henrik I. Christensen,et al.  Automatic grasp planning using shape primitives , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[18]  Peter K. Allen,et al.  Graspit! A versatile simulator for robotic grasping , 2004, IEEE Robotics & Automation Magazine.

[19]  Garth Zeglin,et al.  Preparatory object rotation as a human-inspired grasping strategy , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[20]  Zhe Xu,et al.  1000 Trials: An empirically validated end effector that robustly grasps objects from the floor , 2009, 2009 IEEE International Conference on Robotics and Automation.

[21]  Paul R. Schrater,et al.  Grasping Objects with Environmentally Induced Position Uncertainty , 2009, PLoS Comput. Biol..

[22]  M. Morgan,et al.  Grasping deficits and adaptations in adults with stereo vision losses. , 2009, Investigative ophthalmology & visual science.

[23]  Nancy S. Pollard,et al.  Video survey of pre-grasp interactions in natural hand activities , 2009 .

[24]  Matei T. Ciocarlie,et al.  Hand Posture Subspaces for Dexterous Robotic Grasping , 2009, Int. J. Robotics Res..

[25]  Thomas Feix,et al.  A comprehensive grasp taxonomy , 2009 .

[26]  S. Srinivasa,et al.  Push-grasping with dexterous hands: Mechanics and a method , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Robert D. Howe,et al.  The Highly Adaptive SDM Hand: Design and Performance Evaluation , 2010, Int. J. Robotics Res..

[28]  Heinrich M. Jaeger,et al.  A Positive Pressure Universal Gripper Based on the Jamming of Granular Material , 2012, IEEE Transactions on Robotics.

[29]  Roland Siegwart,et al.  The hand of the DLR Hand Arm System: Designed for interaction , 2012, Int. J. Robotics Res..

[30]  Ling Xu,et al.  Physical Human Interactive Guidance: Identifying Grasping Principles From Human-Planned Grasps , 2012, IEEE Trans. Robotics.

[31]  Tamim Asfour,et al.  Templates for pre-grasp sliding interactions , 2012, Robotics Auton. Syst..

[32]  Alberto Rodriguez,et al.  Grasp invariance , 2012, Int. J. Robotics Res..

[33]  Manuel G. Catalano,et al.  Adaptive synergies: An approach to the design of under-actuated robotic hands , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Honglak Lee,et al.  Deep learning for detecting robotic grasps , 2013, Int. J. Robotics Res..

[35]  Oliver Brock,et al.  Grasping unknown objects by exploiting shape adaptability and environmental constraints , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Robert D. Howe,et al.  Human reach-to-grasp compensation with object pose uncertainty , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[37]  Oliver Brock,et al.  Exploitation of Environmental Constraints in Human and Robotic Grasping , 2013, ISRR.

[38]  Aaron M. Dollar,et al.  Open-Loop Precision Grasping With Underactuated Hands Inspired by a Human Manipulation Strategy , 2013, IEEE Transactions on Automation Science and Engineering.

[39]  Matei T. Ciocarlie,et al.  Kinetic and dimensional optimization for a tendon-driven gripper , 2013, 2013 IEEE International Conference on Robotics and Automation.

[40]  Oliver Brock,et al.  A compliant hand based on a novel pneumatic actuator , 2013, 2013 IEEE International Conference on Robotics and Automation.

[41]  Nicholas Roy,et al.  Robust Object Grasping Using Force Compliant Motion Primitives , 2013 .

[42]  Manuel G. Catalano,et al.  Adaptive synergies for the design and control of the Pisa/IIT SoftHand , 2014, Int. J. Robotics Res..

[43]  Oliver Brock,et al.  A Novel Type of Compliant, Underactuated Robotic Hand for Dexterous Grasping , 2014, Robotics: Science and Systems.

[44]  Christian Cipriani,et al.  Design of Artificial Hands: A Review , 2014, The Human Hand as an Inspiration for Robot Hand Development.

[45]  J. Andrew Bagnell,et al.  Human-inspired force compliant grasping primitives , 2014, Auton. Robots.

[46]  Siddhartha S. Srinivasa,et al.  Extrinsic dexterity: In-hand manipulation with external forces , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[47]  Robert D. Howe,et al.  A compliant, underactuated hand for robust manipulation , 2013, Int. J. Robotics Res..

[48]  Honglak Lee,et al.  Deep learning for detecting robotic grasps , 2013, Int. J. Robotics Res..