Tonic thermonociceptive stimulation selectively modulates ongoing neural oscillations in the human posterior insula: Evidence from intracerebral EEG

ABSTRACT The human insula is an important target for spinothalamic input, but there is still no consensus on its role in pain perception and nociception. In this study, we show that the human insula exhibits activity preferential for sustained thermonociception. Using intracerebral EEG recorded from the insula of 8 patients (2 females) undergoing a presurgical evaluation of focal epilepsy (53 contacts: 27 anterior, 26 posterior), we “frequency‐tagged” the insular activity elicited by sustained thermonociceptive and vibrotactile stimuli, by periodically modulating stimulation intensity at a fixed frequency of 0.2Hz during 75s. Both types of stimuli elicited an insular response at the frequency of stimulation (0.2Hz) and its harmonics, whose magnitude was significantly greater in the posterior insula compared to the anterior insula. Compared to vibrotactile stimulation, thermonociceptive stimulation exerted a markedly greater 0.2Hz modulation of ongoing theta‐band (4–8Hz) and alpha‐band (8–12Hz) oscillations. These modulations were also more prominent in the posterior insula compared to the anterior insula. The identification of oscillatory activities preferential for thermonociception could lead to new insights into the physiological mechanisms of nociception and pain perception in humans.

[1]  L. V. D. Heiden Steady-state evoked potentials for Brain Computer Interface , 2009 .

[2]  André Mouraux,et al.  Thermal Detection Thresholds of Aδ- and C-Fibre Afferents Activated by Brief CO2 Laser Pulses Applied onto the Human Hairy Skin , 2012, PloS one.

[3]  Oscar Herreras,et al.  Local Field Potentials: Myths and Misunderstandings , 2016, Front. Neural Circuits.

[4]  Yong Hu,et al.  Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. , 2013, The journal of pain : official journal of the American Pain Society.

[5]  Johan Wessberg,et al.  Somatotopic Organization of Gentle Touch Processing in the Posterior Insular Cortex , 2009, The Journal of Neuroscience.

[6]  R. Meyer,et al.  Sensitization of unmyelinated nociceptive afferents in monkey varies with skin type. , 1983, Journal of neurophysiology.

[7]  J. Farrar,et al.  The dorsal posterior insula subserves a fundamental role in human pain , 2015, Nature Neuroscience.

[8]  D. Regan Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine , 1989 .

[9]  Andrew C. N. Chen,et al.  Expectancy of pain is influenced by motor preparation: a high-resolution EEG study of cortical alpha rhythms. , 2005, Behavioral neuroscience.

[10]  Simon B. Eickhoff,et al.  Accurate Nonlinear Mapping between MNI Volumetric and FreeSurfer Surface Coordinate Systems , 2018 .

[11]  Elisabeth Colon Steady-state evoked potentials to study nociception and vibrotaction in humans , 2014 .

[12]  Ron Kupers,et al.  Brain imaging of clinical pain states: a critical review and strategies for future studies , 2006, The Lancet Neurology.

[13]  C. L. Kwan,et al.  Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. , 1998, Journal of neurophysiology.

[14]  Andrew C. N. Chen,et al.  Brain and Human pain: Topographic EEG amplitude and coherence mapping , 2005, Brain Topography.

[15]  J H Kim,et al.  Painful cutaneous laser stimuli induce event-related oscillatory EEG activities that are different from those induced by nonpainful electrical stimuli. , 2014, Journal of neurophysiology.

[16]  A. Craig,et al.  Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. , 2014, The Journal of comparative neurology.

[17]  Lars Arendt-Nielsen,et al.  Volunteers with high versus low alpha EEG have different pain–EEG relationship: a human experimental study , 2009, Experimental Brain Research.

[18]  Lars Arendt-Nielsen,et al.  Topographic effects of tonic cutaneous nociceptive stimulation on human electroencephalograph , 2001, Neuroscience Letters.

[19]  Lars Arendt-Nielsen,et al.  Dynamic changes and spatial correlation of EEG activities during cold pressor test in man , 2002, Brain Research Bulletin.

[20]  J. Greenspan,et al.  Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum , 1992, Pain.

[21]  Lars Arendt-Nielsen,et al.  Different EEG topographic effects of painful and non-painful intramuscular stimulation in man , 2001, Experimental Brain Research.

[22]  Andrew C. N. Chen,et al.  Topographic brain measures of human pain and pain responsivity , 1989, Pain.

[23]  Harald van der Werff,et al.  Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage , 2012, Ecol. Informatics.

[24]  Andrew C. N. Chen,et al.  Topology of EEG Coherence Changes May Reflect Differential Neural Network Activation in Cold and Pain Perception , 2004, Brain Topography.

[25]  Sonja Grün,et al.  How local is the local field potential? , 2011, BMC Neuroscience.

[26]  André Mouraux,et al.  Steady-state evoked potentials to tag specific components of nociceptive cortical processing , 2012, NeuroImage.

[27]  J. Smith,et al.  Tonic changes in alpha power during immersion of the hand in cold water. , 1991, Electroencephalography and clinical neurophysiology.

[28]  C. Stohler,et al.  The effect of experimental muscle pain on the background electrical brain activity , 1992, Pain.

[29]  Matthias Ringkamp,et al.  Thermoreceptors and thermosensitive afferents , 2009, Neuroscience & Biobehavioral Reviews.

[30]  David Bowsher,et al.  Central Representation of Somatic Sensations in the Parietal Operculum (SII) and Insula , 2004, European Neurology.

[31]  Christopher J. Honey,et al.  iELVis: An open source MATLAB toolbox for localizing and visualizing human intracranial electrode data , 2016, Journal of Neuroscience Methods.

[32]  François Mauguière,et al.  Human SII and posterior insula differently encode thermal laser stimuli. , 2006, Cerebral cortex.

[33]  F. Birklein,et al.  Insula and sensory insular cortex and somatosensory control in patients with insular stroke , 2014, European journal of pain.

[34]  T. Naidich,et al.  The insula: anatomic study and MR imaging display at 1.5 T. , 2004, AJNR. American journal of neuroradiology.

[35]  Lars Arendt-Nielsen,et al.  Is the pain in chronic pancreatitis of neuropathic origin? Support from EEG studies during experimental pain. , 2008, World journal of gastroenterology.

[36]  Frank Birklein,et al.  Posterior insular cortex – a site of vestibular–somatosensory interaction? , 2013, Brain and behavior.

[37]  S Seri,et al.  Quantitative EEG modifications during the Cold Water Pressor Test: hemispheric and hand differences. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[38]  Gian Luca Romani,et al.  Modulation of alpha oscillations in insular cortex reflects the threat of painful stimuli , 2009, NeuroImage.

[39]  A. Schnitzler,et al.  Pain Suppresses Spontaneous Brain Rhythms , 2006 .

[40]  S. Lautenbacher,et al.  EEG responses to tonic heat pain , 2006, Experimental Brain Research.

[41]  Gian Domenico Iannetti,et al.  Evidence against pain specificity in the dorsal posterior insula , 2015, F1000Research.

[42]  Alon Sinai,et al.  Tonic pain and continuous EEG: Prediction of subjective pain perception by alpha-1 power during stimulation and at rest , 2012, Clinical Neurophysiology.

[43]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[44]  Domenica Le Pera,et al.  Long-lasting effect evoked by tonic muscle pain on parietal EEG activity in humans , 2000, Clinical Neurophysiology.

[45]  U. Baumgärtner,et al.  Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study. , 2010, Journal of neurophysiology.

[46]  C J Robinson,et al.  Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: a comparison of neural events in monkey with sensory judgments in human. , 1983, Journal of neurophysiology.

[47]  André Mouraux,et al.  Habituation of phase-locked local field potentials and gamma-band oscillations recorded from the human insula , 2018, Scientific Reports.

[48]  Weiwei Peng,et al.  Pain Related Cortical Oscillations: Methodological Advances and Potential Applications , 2016, Front. Comput. Neurosci..

[49]  R. Llinás,et al.  Abnormal thalamocortical activity in patients with Complex Regional Pain Syndrome (CRPS) Type I , 2010, PAIN.

[50]  F. Mauguière,et al.  Stimulation of the human cortex and the experience of pain: Wilder Penfield's observations revisited. , 2012, Brain : a journal of neurology.

[51]  R. Meyer,et al.  Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. , 1995, The Journal of physiology.

[52]  ScienceDirect Neurophysiologie clinique : Clinical neurophysiology. , 1988 .

[53]  Howard L Fields,et al.  Isolating the Modulatory Effect of Expectation on Pain Transmission: A Functional Magnetic Resonance Imaging Study , 2006, The Journal of Neuroscience.

[54]  Miriam Kunz,et al.  Responses to tonic heat pain in the ongoing EEG under conditions of controlled attention , 2014, Somatosensory & motor research.

[55]  André Mouraux,et al.  EEG frequency tagging using ultra-slow periodic heat stimulation of the skin reveals cortical activity specifically related to C fiber thermonociceptors , 2017, NeuroImage.

[56]  André Mouraux,et al.  Nociceptive Local Field Potentials Recorded from the Human Insula Are Not Specific for Nociception , 2015, PLoS biology.

[57]  Stephanie Schuckers,et al.  EEG indices of tonic pain-related activity in the somatosensory cortices , 2008, Clinical Neurophysiology.

[58]  N. Logothetis,et al.  Modular architectonic organization of the insula in the macaque monkey , 2014, The Journal of comparative neurology.

[59]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[60]  K. Shen,et al.  Frequency-domain EEG source analysis for acute tonic cold pain perception , 2012, Clinical Neurophysiology.

[61]  André Mouraux,et al.  Gamma‐Band Oscillations Preferential for Nociception can be Recorded in the Human Insula , 2018, Cerebral cortex.

[62]  David P. Friedman,et al.  A modality-specific somatosensory area within the insula of the rhesus monkey , 1993, Brain Research.

[63]  Sterling C. Johnson,et al.  Anteroposterior somatotopy of innocuous cooling activation focus in human dorsal posterior insular cortex. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[64]  Thomas W Okell,et al.  The dorsal posterior insula is not an island in pain but subserves a fundamental role - Response to: “Evidence against pain specificity in the dorsal posterior insula” by Davis et al. , 2015, F1000Research.

[65]  Abbas Sohrabpour,et al.  Spectral and spatial changes of brain rhythmic activity in response to the sustained thermal pain stimulation , 2016, Human brain mapping.

[66]  André Mouraux,et al.  Nociceptive local field potentials recorded from the human insula are not specific for nociception , 2015 .

[67]  Krish D. Singh,et al.  fMRI of Thermal Pain: Effects of Stimulus Laterality and Attention , 2002, NeuroImage.

[68]  A. Patapoutian,et al.  Nociceptors: the sensors of the pain pathway. , 2010, The Journal of clinical investigation.

[69]  Jos W. R. Twisk,et al.  Applied multilevel analysis : a practical guide , 2006 .

[70]  A. Mouraux,et al.  Nociceptive Steady-State Evoked Potentials Elicited by Rapid Periodic Thermal Stimulation of Cutaneous Nociceptors , 2011, The Journal of Neuroscience.

[71]  A. Mouraux,et al.  Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain , 2012, Neurophysiologie Clinique/Clinical Neurophysiology.

[72]  K. Yau,et al.  Interoception: the sense of the physiological condition of the body , 2003, Current Opinion in Neurobiology.

[73]  François Mauguière,et al.  Processing of nociceptive input from posterior to anterior insula in humans , 2014, Human brain mapping.

[74]  J. Sarnthein,et al.  Increased EEG power and slowed dominant frequency in patients with neurogenic pain. , 2006, Brain : a journal of neurology.

[75]  A Mouraux,et al.  Across-trial averaging of event-related EEG responses and beyond. , 2008, Magnetic resonance imaging.

[76]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[77]  Johannes Sarnthein,et al.  High thalamocortical theta coherence in patients with neurogenic pain , 2008, NeuroImage.

[78]  Mara Fabri,et al.  Cortical areas within the lateral sulcus connected to cutaneous representations in areas 3b and 1: A revised interpretation of the second somatosensory area in macaque monkeys , 1995, The Journal of comparative neurology.

[79]  R. Meyer,et al.  Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. , 1981, Science.

[80]  Joachim Gross,et al.  Prefrontal Gamma Oscillations Encode Tonic Pain in Humans , 2015, Cerebral cortex.

[81]  A. Craig How do you feel? Interoception: the sense of the physiological condition of the body , 2002, Nature Reviews Neuroscience.

[82]  André Mouraux,et al.  EEG Frequency Tagging to Dissociate the Cortical Responses to Nociceptive and Nonnociceptive Stimuli , 2014, Journal of Cognitive Neuroscience.

[83]  Lars Arendt-Nielsen,et al.  Differential cerebral responses to aversive auditory arousal versus muscle pain: specific EEG patterns are associated with human pain processing , 2002, Experimental Brain Research.

[84]  M. Bushnell,et al.  Differentiation of visceral and cutaneous pain in the human brain. , 2003, Journal of neurophysiology.

[85]  Sylvie Nozaradan,et al.  Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[86]  M. Honda,et al.  Intracerebral pain processing in a Yoga Master who claims not to feel pain during meditation , 2005, European journal of pain.

[87]  Lars Arendt-Nielsen,et al.  Psychophysical and EEG responses to repeated experimental muscle pain in humans: Pain intensity encodes EEG activity , 2003, Brain Research Bulletin.

[88]  F. Mauguière,et al.  Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex , 2009, PAIN.

[89]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[90]  Yong Hu,et al.  Changes of Spontaneous Oscillatory Activity to Tonic Heat Pain , 2014, PloS one.

[91]  André Mouraux,et al.  Frequency tagging to track the neural processing of contrast in fast, continuous sound sequences. , 2017, Journal of neurophysiology.