Structural Dynamics of Eukaryotic Chromosome Evolution

Large-scale genome sequencing is providing a comprehensive view of the complex evolutionary forces that have shaped the structure of eukaryotic chromosomes. Comparative sequence analyses reveal patterns of apparently random rearrangement interspersed with regions of extraordinarily rapid, localized genome evolution. Numerous subtle rearrangements near centromeres, telomeres, duplications, and interspersed repeats suggest hotspots for eukaryotic chromosome evolution. This localized chromosomal instability may play a role in rapidly evolving lineage-specific gene families and in fostering large-scale changes in gene order. Computational algorithms that take into account these dynamic forces along with traditional models of chromosomal rearrangement show promise for reconstructing the natural history of eukaryotic chromosomes.

[1]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[2]  J. Nadeau,et al.  Lengths of chromosomal segments conserved since divergence of man and mouse. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[3]  AC Tose Cell , 1993, Cell.

[4]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[5]  N. Archidiacono,et al.  Evolution of chromosome Y in primates , 1998, Chromosoma.

[6]  B. Trask,et al.  Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. , 1998, Human molecular genetics.

[7]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[8]  David Sankoff,et al.  Genome rearrangement with gene families , 1999, Bioinform..

[9]  S. O’Brien,et al.  The promise of comparative genomics in mammals. , 1999, Science.

[10]  M. Marra,et al.  Genetic definition and sequence analysis of Arabidopsis centromeres. , 1999, Science.

[11]  David Waddington,et al.  The dynamics of chromosome evolution in birds and mammals , 1999, Nature.

[12]  J. Ashby References and Notes , 1999 .

[13]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[14]  B. Barrell,et al.  Prevalence of small inversions in yeast gene order evolution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  B. Gaut,et al.  Maize as a model for the evolution of plant nuclear genomes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  B. Gaut Sawkins, Maize as a model for evolution of plant nuclear genomes , 2000 .

[17]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[18]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[19]  S. Otto,et al.  Polyploid incidence and evolution. , 2000, Annual review of genetics.

[20]  E. Eichler,et al.  Recent duplication, domain accretion and the dynamic mutation of the human genome. , 2001, Trends in genetics : TIG.

[21]  R. Moyzis,et al.  Integration of telomere sequences with the draft human genome sequence , 2001, Nature.

[22]  P Bork,et al.  Inversions and the dynamics of eukaryotic gene order. , 2001, Trends in genetics : TIG.

[23]  Paul Richardson,et al.  Human Chromosome 19 and Related Regions in Mouse: Conservative and Lineage-Specific Evolution , 2001, Science.

[24]  E. Eichler,et al.  Lessons from the human genome: transitions between euchromatin and heterochromatin. , 2001, Human molecular genetics.

[25]  N. Archidiacono,et al.  Centromere emergence in evolution. , 2001, Genome research.

[26]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[27]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[28]  P. Stankiewicz,et al.  Genome architecture, rearrangements and genomic disorders. , 2002, Trends in genetics : TIG.

[29]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[30]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[31]  James K. M. Brown,et al.  Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. , 2002, Genome research.

[32]  J. Weissenbach,et al.  Four-hundred million years of conserved synteny of human Xp and Xq genes on three Tetraodon chromosomes. , 2002, Genome research.

[33]  Janet Hemingway,et al.  Evolution of Supergene Families Associated with Insecticide Resistance , 2002, Science.

[34]  Matthias Platzer,et al.  Sequence and analysis of chromosome 2 of Dictyostelium discoideum , 2002, Nature.

[35]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[36]  Karsten Hokamp,et al.  Extensive genomic duplication during early chordate evolution , 2002, Nature Genetics.

[37]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[38]  K. Choo,et al.  Neocentromeres: role in human disease, evolution, and centromere study. , 2002, American journal of human genetics.

[39]  K. H. Wolfe,et al.  Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. , 2002, Genome research.

[40]  Peer Bork,et al.  Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster , 2002, Science.

[41]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[42]  William H. Majoros,et al.  A Comparison of Whole-Genome Shotgun-Derived Mouse Chromosome 16 and the Human Genome , 2002, Science.

[43]  Jeanne Romero-Severson,et al.  Inversions and Gene Order Shuffling in Anopheles gambiae and A. funestus , 2002, Science.

[44]  M. Adams,et al.  Recent Segmental Duplications in the Human Genome , 2002, Science.

[45]  M. Batzer,et al.  Alu repeats and human genomic diversity , 2002, Nature Reviews Genetics.

[46]  Xun Gu,et al.  Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution , 2002, Nature Genetics.

[47]  T. Graves,et al.  The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes , 2003, Nature.

[48]  James M. Eldred,et al.  The DNA sequence of human chromosome 7 , 2003, Nature.

[49]  Brad A. Chapman,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2003, Nature.

[50]  Jonathan M. Mudge,et al.  Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome arm 10p. , 2003, Genome research.

[51]  A. Hughes,et al.  The temporal distribution of gene duplication events in a set of highly conserved human gene families. , 2003, Molecular biology and evolution.

[52]  Sean R. Eddy,et al.  An active DNA transposon family in rice , 2003, Nature.

[53]  E. Eichler,et al.  Analysis of primate genomic variation reveals a repeat-driven expansion of the human genome. , 2003, Genome research.

[54]  P. Pevzner,et al.  Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. , 2003, Genome research.

[55]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[56]  Dannie Durand,et al.  Vertebrate evolution: doubling and shuffling with a full deck. , 2003, Trends in genetics : TIG.

[57]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .