Dense open-set recognition based on training with noisy negative images

[1]  Sinisa Segvic,et al.  Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images , 2019, IEEE Transactions on Intelligent Transportation Systems.

[2]  Xiao Bai,et al.  Multi-head enhanced self-attention network for novelty detection , 2020, Pattern Recognit..

[3]  Isabelle Bloch,et al.  One Versus all for deep Neural Network Incertitude (OVNNI) quantification , 2020, ArXiv.

[4]  Vladlen Koltun,et al.  MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Songcan Chen,et al.  Guided CNN for generalized zero-shot and open-set recognition using visual and semantic prototypes , 2020, Pattern Recognit..

[6]  Ang Li,et al.  Hybrid Models for Open Set Recognition , 2020, ECCV.

[7]  Yingda Xia,et al.  Synthesize then Compare: Detecting Failures and Anomalies for Semantic Segmentation , 2020, ECCV.

[8]  Isabelle Bloch,et al.  TRADI: Tracking deep neural network weight distributions , 2019, ECCV.

[9]  Mohammad Norouzi,et al.  Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One , 2019, ICLR.

[10]  Paul Bergmann,et al.  Uninformed Students: Student-Teacher Anomaly Detection With Discriminative Latent Embeddings , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Dawn Song,et al.  A Benchmark for Anomaly Segmentation , 2019, ArXiv.

[12]  Willem Waegeman,et al.  Aleatoric and Epistemic Uncertainty in Machine Learning: A Tutorial Introduction , 2019, ArXiv.

[13]  Roland Siegwart,et al.  Fishyscapes: A Benchmark for Safe Semantic Segmentation in Autonomous Driving , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[14]  Rick Salay,et al.  Efficacy of Pixel-Level OOD Detection for Semantic Segmentation , 2019, ArXiv.

[15]  Marin Oršić,et al.  Simultaneous Semantic Segmentation and Outlier Detection in Presence of Domain Shift , 2019, GCPR.

[16]  Huchuan Lu,et al.  Deep gated attention networks for large-scale street-level scene segmentation , 2019, Pattern Recognit..

[17]  Tao Mei,et al.  ScratchDet: Training Single-Shot Object Detectors From Scratch , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[19]  Yee Whye Teh,et al.  Do Deep Generative Models Know What They Don't Know? , 2018, ICLR.

[20]  Vishal M. Patel,et al.  Learning Deep Features for One-Class Classification , 2018, IEEE Transactions on Image Processing.

[21]  Chuan Sheng Foo,et al.  Adversarially Learned Anomaly Detection , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[22]  Oliver Zendel,et al.  WildDash - Creating Hazard-Aware Benchmarks , 2018, ECCV.

[23]  Marin Orsic,et al.  Discriminative out-of-distribution detection for semantic segmentation , 2018, ArXiv.

[24]  Gijs Dubbelman,et al.  Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[25]  Yarin Gal,et al.  Understanding Measures of Uncertainty for Adversarial Example Detection , 2018, UAI.

[26]  Mark J. F. Gales,et al.  Predictive Uncertainty Estimation via Prior Networks , 2018, NeurIPS.

[27]  Graham W. Taylor,et al.  Learning Confidence for Out-of-Distribution Detection in Neural Networks , 2018, ArXiv.

[28]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[29]  Lorenzo Porzi,et al.  In-place Activated BatchNorm for Memory-Optimized Training of DNNs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[30]  Kibok Lee,et al.  Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples , 2017, ICLR.

[31]  R. Srikant,et al.  Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks , 2017, ICLR.

[32]  Peter Kontschieder,et al.  The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[33]  Sinisa Segvic,et al.  Ladder-Style DenseNets for Semantic Segmentation of Large Natural Images , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[34]  Bolei Zhou,et al.  Scene Parsing through ADE20K Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Kilian Q. Weinberger,et al.  On Calibration of Modern Neural Networks , 2017, ICML.

[36]  Thomas A. Funkhouser,et al.  Dilated Residual Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Alex Kendall,et al.  What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? , 2017, NIPS.

[38]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Samy Bengio,et al.  Understanding deep learning requires rethinking generalization , 2016, ICLR.

[40]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[41]  Sebastian Ramos,et al.  Lost and Found: detecting small road hazards for self-driving vehicles , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[42]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[44]  Yinda Zhang,et al.  LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop , 2015, ArXiv.

[45]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[46]  Terrance E. Boult,et al.  Probability Models for Open Set Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.