Eigenvalues of Lidstone boundary value problems

We consider the following boundary value problem: (-1)^ny^(^2^n^)=@lF(t,y),n>=1,t@?(0,1),y^(^2^i^)(0)=y^(^2^i^)(1)=0,0=0. The values of @l are characterized so that the boundary value problem has a positive solution. In addition, we derive explicit intervals of @l such that for any @l in the interval, existence of a positive solution of the boundary value problem is guaranteed. Several examples are also included to dwell upon the importance of the results obtained.

[1]  E. H. Twizell,et al.  Multiderivative methods for nonlinear beam problems , 1988 .

[2]  M. M. Chawla,et al.  Finite difference methods for two-point boundary value problems involving high order differential equations , 1979 .

[3]  Tien D. Bui,et al.  Solving Boundary Value Problems in Plate Deflection Theory , 1981 .

[4]  S. Tirmizi,et al.  Numerical methods for unilateral problems , 1986 .

[5]  Ravi P. Agarwal,et al.  Focal Boundary Value Problems for Differential and Difference Equations , 1998 .

[6]  E. H. Twizell Numerical Methods for Sixth-Order Boundary Value Problems , 1988 .

[7]  Peter Forster,et al.  Existenzaussagen und Fehlerabschätzungen bei gewissen nichtlinearen Randwertaufgaben mit gewöhnlichen Differentialgleichungen , 1967 .

[8]  E. H. Twizell,et al.  Numerical methods for the solution of special and general sixth-order boundary-value problems, with applications to Bénard layer eigenvalue problems , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[9]  P. Baldwin,et al.  Localised instability in a bénard layer , 1987 .

[10]  Juri Toomre,et al.  Stellar convection theory. II - Single-mode study of the second convection zone in an A-type star , 1976 .

[11]  Ravi P. Agarwal,et al.  Error Inequalities in Polynomial Interpolation and their Applications , 1993 .

[12]  Ravi P. Agarwal,et al.  Lidstone polynomials and boundary value problems , 1989 .

[13]  Georgios Akrivis,et al.  Boundary value problems occurring in plate deflection theory , 1982 .

[14]  P. Baldwin,et al.  Asymptotic estimates of the eigenvalues of a sixth-order boundary-value problem obtained by using global phase-integral methods , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[15]  Edward H. Twizell,et al.  Finite-difference methods for twelfth-order boundary-value problems , 1991 .

[16]  E. H. Twizell,et al.  Finite-difference methods for the solution of special eighth-order boundary-value problems , 1993 .

[17]  E. H. Twizell,et al.  A sixth‐order multiderivative method for two beam problems , 1986 .

[18]  Ravi P. Agarwal,et al.  Quasilinearization and approximate quasilinearization for lidstone boundary value problems , 1992, Int. J. Comput. Math..

[19]  Leo F. Boron,et al.  Positive solutions of operator equations , 1964 .

[20]  Edward H. Twizell,et al.  Numerical methods for the solution of special sixth-order boundary-value problems , 1992 .

[21]  Edward H. Twizell,et al.  Numerical methods for eighth-, tenth- and twelfth-order eigenvalue problems arising in thermal instability , 1994, Adv. Comput. Math..

[22]  D. O’Regan,et al.  Positive Solutions of Differential, Difference and Integral Equations , 1998 .