Subsurface water and clay mineral formation during the early history of Mars

Clay minerals, recently discovered to be widespread in Mars’s Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars’s surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

[1]  J. Cann,et al.  A discussion concerning the floor of the northwest Indian Ocean - An area on the crest of the Carlsberg Ridge: petrology and magnetic survey , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  Hermann Harder,et al.  Nontronite synthesis at low temperatures , 1976 .

[3]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[4]  C. Allen,et al.  Experimental shock lithification of water-bearing rock powders , 1982 .

[5]  M. Carr Stability of streams and lakes on Mars , 1983 .

[6]  D. Eberl Clay mineral formation and transformation in rocks and soils , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[8]  川上 紳一,et al.  Impact Cratering:A Geologic Process Oxford Monographs on Geology and Geophysics No.11 H.,J.MELOSH , 1989 .

[9]  R. E. Wilson,et al.  Recent chemical weathering of basalts , 1992 .

[10]  R. Bevins,et al.  Low Grade Metamorphism , 1992 .

[11]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[12]  F. Spear Metamorphic phase equilibria and pressure-temperature-time paths , 1993 .

[13]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[14]  S. Squyres,et al.  Early Mars: How Warm and How Wet? , 1994, Science.

[15]  R. T. Martin,et al.  Definition of Clay and Clay Mineral: Joint Report of the Aipea Nomenclature and CMS Nomenclature Committees , 1995 .

[16]  G. Droop Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths Mineralogical Society of America , 1996, Mineralogical Magazine.

[17]  S. Gíslason,et al.  Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover , 1996 .

[18]  Danielle M. Moore Comment on: Definition of Clay and Clay Mineral: Joint Report of the AIPEA Nomenclature and CMS Nomenclature Committees , 1996 .

[19]  Kenneth L. Tanaka Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars , 1997 .

[20]  E. Shock,et al.  Hydrothermal hydration of Martian crust: illustration via geochemical model calculations. , 1997, Journal of geophysical research.

[21]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[22]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Haberle Early Mars Climate Models , 1998 .

[24]  Virginia C. Gulick,et al.  Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars , 1998 .

[25]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[26]  L. Kump,et al.  CHEMICAL WEATHERING ,A TMOSPHERIC CO 2 , AND CLIMATE , 2000 .

[27]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .

[28]  N. Cabrol,et al.  On the possibility of liquid water on present‐day Mars , 2001 .

[29]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[30]  David E. Smith,et al.  Ancient Geodynamics and Global-Scale Hydrology on Mars , 2001, Science.

[31]  A. Floren,et al.  ' " ' " ' " . " ' " " " " " ' " ' " " " " " : ' " 1 , 2001 .

[32]  S. Squyres,et al.  Hydrothermal systems associated with martian impact craters , 2002 .

[33]  A. Colaprete,et al.  Environmental Effects of Large Impacts on Mars , 2002, Science.

[34]  K. Harrison,et al.  Controls on Martian hydrothermal systems: Application to valley network and magnetic anomaly formation , 2002 .

[35]  Everett Shock,et al.  Merging Genomes with Geochemistry in Hydrothermal Ecosystems , 2002, Science.

[36]  Thomas G. Sharp,et al.  Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy , 2003 .

[37]  S. Wing,et al.  Ion aurora and its seasonal variations , 2004 .

[38]  David A. Kring,et al.  Impact‐induced hydrothermal activity on early Mars , 2005 .

[39]  Alan D. Howard,et al.  An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits , 2005 .

[40]  Alan D. Howard,et al.  An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars: 2. Increased Runoff and Paleolake Development , 2005 .

[41]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[42]  F. Nimmo EARLY CRUSTAL EVOLUTION OF MARS 1 , 2005 .

[43]  J. Vedin,et al.  Electron pressure effects on driven auroral Alfven waves , 2005 .

[44]  R. Merriman Clay minerals and sedimentary basin history , 2005 .

[45]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[46]  William V. Boynton,et al.  Mapping Mars geochemically , 2010 .

[47]  F. Poulet,et al.  Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates , 2007, Nature.

[48]  Philip R. Christensen,et al.  Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration , 2007 .

[49]  S. McLennan,et al.  A ∼3.5 Ga record of water-limited, acidic weathering conditions on Mars , 2007 .

[50]  M. Zuber,et al.  Early evolution of Mars with mantle compositional stratification or hydrothermal crustal cooling , 2007 .

[51]  D. Schrag,et al.  A Sulfur Dioxide Climate Feedback on Early Mars , 2007, Science.

[52]  H. Franzson,et al.  Chemical transport in geothermal systems in Iceland Evidence from hydrothermal alteration , 2008 .

[53]  M. Zuber,et al.  Sulfur-induced greenhouse warming on early Mars , 2008 .

[54]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[55]  D. Loizeau ETUDE SPECTRALE ET GEOLOGIQUE DES PHYLLOSILICATES DE MARS, Analyse des données OMEGA et HRSC de la sonde MARS EXPRESS , 2008 .

[56]  J. Moore,et al.  PROLONGED LATE-STAGE VALLEY NETWORK FORMATION : LANDFORM SIMULATIONS OF PARANA BASIN , MARS , 2008 .

[57]  H. Frey Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system , 2008 .

[58]  S. Werner The early martian evolution—Constraints from basin formation ages , 2008 .

[59]  R. Clark,et al.  Phyllosilicate and sulfate‐hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars , 2008 .

[60]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[61]  Jean-Pierre Bibring,et al.  Abundance of minerals in the phyllosilicate-rich units on Mars , 2008 .

[62]  Jean-Pierre Bibring,et al.  Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars , 2008, Science.

[63]  J. Head,et al.  The timing of martian valley network activity : Constraints from buffered crater counting , 2008 .

[64]  W. Fischer,et al.  Missing salts on early Mars , 2009 .

[65]  A. McEwen,et al.  Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars , 2009 .

[66]  C. McKay,et al.  Stability against freezing of aqueous solutions on early Mars , 2009, Nature.

[67]  A. Knoll,et al.  Juvenile Chemical Sediments and the Long Term Persistence of Water at the Surface of Mars , 2009 .

[68]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[69]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[70]  Stephanie C. Werner,et al.  The global martian volcanic evolutionary history , 2009 .

[71]  S. Mojzsis,et al.  Microbial habitability of the Hadean Earth during the late heavy bombardment , 2009, Nature.

[72]  Jeffrey S. Kargel,et al.  Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars , 2009 .

[73]  S. Squyres,et al.  Diverse aqueous environments on ancient Mars revealed in the southern highlands , 2009 .

[74]  G. Swayze,et al.  Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate , 2009 .

[75]  S. Murchie,et al.  Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin , 2009 .

[76]  D. Kring,et al.  Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars , 2009 .

[77]  Charles J. Barnhart,et al.  Long-term precipitation and late-stage valley network formation: Landform simulations of Parana Basin, Mars , 2009 .

[78]  R. Clark,et al.  Investigation of an Argyre basin ring structure using Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars , 2010 .

[79]  S. Murchie,et al.  Detection of Hydrated Silicates in Crustal Outcrops in the Northern Plains of Mars , 2010, Science.

[80]  F. Seelos,et al.  Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars , 2010 .

[81]  G. Swayze,et al.  Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris , 2010 .

[82]  R. Milliken,et al.  Sources and sinks of clay minerals on Mars , 2010 .

[83]  J. Dohm,et al.  Noachian and more recent phyllosilicates in impact craters on Mars , 2010, Proceedings of the National Academy of Sciences.

[84]  J. Dohm,et al.  Evidence for Hesperian impact-induced hydrothermalism on Mars , 2010 .

[85]  W. Fischer,et al.  Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars , 2010 .

[86]  J. Grotzinger,et al.  Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater , 2010 .

[87]  A. Meunier,et al.  The Fe-Rich Clay Microsystems in Basalt-Komatiite Lavas: Importance of Fe-Smectites for Pre-Biotic Molecule Catalysis During the Hadean Eon , 2010, Origins of Life and Evolution of Biospheres.

[88]  M. Zuber,et al.  Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra , 2010 .

[89]  A. McEwen,et al.  Mineralogy and stratigraphy of phyllosilicate‐bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin , 2010 .

[90]  S. Murchie,et al.  Geologic setting of serpentine deposits on Mars , 2010 .

[91]  V. Hamilton,et al.  Geologic context of proposed chloride‐bearing materials on Mars , 2010 .

[92]  J. Michalski,et al.  Deep crustal carbonate rocks exposed by meteor impact on Mars , 2010 .

[93]  R. Morris,et al.  Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate‐bearing deposits in northern Sinus Meridiani, Mars , 2010 .

[94]  F. G. Carrozzo,et al.  The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission. , 2010, Astrobiology.

[95]  V. Chevrier,et al.  Mineralogical characterization of acid weathered phyllosilicates with implications for secondary martian deposits , 2010 .

[96]  R. Clark,et al.  Evidence for Low-Grade Metamorphism, Hydrothermal Alteration, and Diagenesis on Mars from Phyllosilicate Mineral Assemblages , 2011 .

[97]  Bruce A. Campbell,et al.  Massive CO2 Ice Deposits Sequestered in the South Polar Layered Deposits of Mars , 2011, Science.

[98]  Ashwin R. Vasavada,et al.  The science process for selecting the landing site for the 2011 Mars Science Laboratory , 2011 .

[99]  S. Squyres,et al.  Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars , 2011 .