Allocation of the S-genome chromosomes of Aegilops variabilis Eig. carrying powdery mildew resistance in triticale (× Triticosecale Wittmack)

[1]  Jerzy H. Czembor,et al.  Virulence Structure of the Powdery Mildew (Blumeria graminis) Population Occurring on Triticale (x Triticosecale) in Poland , 2014 .

[2]  H. Wiśniewska,et al.  Introgression of A- and B-genome of tetraploid triticale chromatin into tetraploid rye , 2013, Journal of Applied Genetics.

[3]  H. Wiśniewska,et al.  Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (X Triticosecale Witt.) breeding , 2013, Journal of Applied Genetics.

[4]  L. Błaszczyk,et al.  Aegilops-Secale amphiploids: chromosome categorisation, pollen viability and identification of fungal disease resistance genes , 2011, Journal of Applied Genetics.

[5]  S. Stojałowski,et al.  Identification of the chromosome complement and the spontaneous 1R/1V translocations in allotetraploid Secale cereale × Dasypyrum villosum hybrids through cytogenetic approaches , 2011, Journal of Applied Genetics.

[6]  K. Kowalczyk,et al.  TO POWDERY MILDEW , 2011 .

[7]  Joachim Messing,et al.  Palaeogenomics of plants: synteny-based modelling of extinct ancestors. , 2010, Trends in plant science.

[8]  A. Lukaszewski,et al.  The Ph1 Locus from Wheat Controls Meiotic Chromosome Pairing in Autotetraploid Rye (Secale cereale L.) , 2010, Cytogenetic and Genome Research.

[9]  I. Molnár,et al.  GISH reveals different levels of meiotic pairing with wheat for individual Aegilops biuncialis chromosomes , 2010, Biologia Plantarum.

[10]  A. Lukaszewski The Ph 1 Locus from Wheat Controls Meiotic Chromosome Pairing in Autotetraploid Rye ( Secale cereale , 2010 .

[11]  J. Jahier,et al.  Assignment of Aegilops variabilis Eig chromosomes and translocations carrying resistance to nematodes in wheat. , 2009, Genome.

[12]  Volumen,et al.  Cytogenetic Analysis , 2009 .

[13]  E. Salina,et al.  Analysis of 5S rDNA changes in synthetic allopolyploids Triticum × Aegilops , 2008, Molecular Biology.

[14]  G. F. Marais,et al.  Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina , 2008 .

[15]  P. Krajewski,et al.  Chromosome pairing in allotetraploid hybrids of Festuca pratensis × Lolium perenne revealed by genomic in situ hybridization (GISH) , 2008, Chromosome Research.

[16]  J. Weissenbach,et al.  Contrasted Microcolinearity and Gene Evolution Within a Homoeologous Region of Wheat and Barley Species , 2008, Journal of Molecular Evolution.

[17]  T. Langdon,et al.  Multi-substrate chromosome preparations for high throughput comparative FISH , 2006, BMC biotechnology.

[18]  G. Fanning,et al.  Design and cloning strategies for constructing shRNA expression vectors , 2006, BMC biotechnology.

[19]  A. Schneider,et al.  Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. , 2005, Genome.

[20]  N. Jouve,et al.  Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6×-triticale , 1994, Chromosome Research.

[21]  Cenci Alberto,et al.  Genetic analysis of the Aegilops longissima 3S chromosome carrying the Pm13 resistance gene , 2003, Euphytica.

[22]  B. Gill,et al.  Molecular Cytogenetic Analysis of Tetraploid and Hexaploid Aegilops Crassa , 1998, Chromosome Research.

[23]  N. Tuleen,et al.  Isolation and identification of Triticum aestivum L. em. Thell. cv Chinese Spring-T. peregrinum Hackel disomic chromosome addition lines , 1996, Theoretical and Applied Genetics.

[24]  E. Marinova,et al.  Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat , 2004, Euphytica.

[25]  B. Gill,et al.  Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster , 2004, Plant Systematics and Evolution.

[26]  A. Schneider,et al.  Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat , 2003 .

[27]  N. Jouve,et al.  Evolutionary trends of different repetitive DNA sequences during speciation in the genus secale. , 2002, The Journal of heredity.

[28]  A. Lukaszewski,et al.  The effect of the D-genome chromosome substitutions and of translocations of chromosome 1D on some quality and agronomic parameters of winter triticale. , 2002 .

[29]  J. Chełkowski,et al.  Powdery mildew resistance genes in wheat: verification of STS markers. , 2001, Journal of applied genetics.

[30]  J. Doležel,et al.  Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). , 2000, Genetics.

[31]  J. S. Heslop-Harrison Comparative Genome Organization in Plants: From Sequence and Markers to Chromatin and Chromosomes , 2000, Plant Cell.

[32]  A. Lukaszewski Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination , 2000 .

[33]  R. D'Ovidio,et al.  Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat , 1999, Theoretical and Applied Genetics.

[34]  B. Wojciechowska,et al.  Production, morphology and fertility of the amphiploids Aegilops variabilis × Secale cereale and Ae. kotschyi × S. cereale , 1999 .

[35]  J. Chełkowski,et al.  Genes for resistance to wheat powdery mildew , 1999 .

[36]  B. Gill,et al.  Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species. , 1996, Genome.

[37]  B. Gill,et al.  Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. , 1996, Genome.

[38]  H. Tsujimoto,et al.  Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. , 1995, Genome.

[39]  J. Jahier,et al.  Origin of Sv Genome of Aegilops variabilis and Utilization of the Sv as Analyser of the S Genome of the Aegilops Species in the Sitopsis Section , 1992 .

[40]  J. Dvorak,et al.  Diploid ancestry and evolution of Triticum kotschyi and T. peregrinum examined using variation in repeated nucleotide sequences , 1992 .

[41]  I. Unfried,et al.  Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana , 1990, Nucleic Acids Res..

[42]  T. E. Miller,et al.  Transfer of mildew resistance from Triticum longissimum into wheat by ph1 induced homoeologous recombination. , 1988 .

[43]  W. Gerlach,et al.  Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. , 1980, Nucleic acids research.

[44]  E. R. Sears GENETICS SOCIETY OF CANADA AWARD OF EXCELLENCE LECTURE AN INDUCED MUTANT WITH HOMOEOLOGOUS PAIRING IN COMMON WHEAT , 1977 .

[45]  S. F. Fuentes Triticale diseases review , 1974 .

[46]  H H Flor,et al.  Current Status of the Gene-For-Gene Concept , 1971 .

[47]  R. Riley,et al.  Genetic Control of the Cytologically Diploid Behaviour of Hexaploid Wheat , 1958, Nature.