Genetic architecture of type 2 diabetes.

[1]  K. Tomizawa,et al.  Identification of a splicing variant that regulates type 2 diabetes risk factor CDKAL1 level by a coding-independent mechanism in human. , 2014, Human molecular genetics.

[2]  M. Fornage,et al.  Polygenic Type 2 Diabetes Prediction at the Limit of Common Variant Detection , 2014, Diabetes.

[3]  Jasmin Divers,et al.  Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. , 2014, JAMA.

[4]  Tanya M. Teslovich,et al.  Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014 .

[5]  J. Shaw,et al.  Global estimates of diabetes prevalence for 2013 and projections for 2035. , 2014, Diabetes Research and Clinical Practice.

[6]  Kari Stefansson,et al.  Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes , 2014, Nature Genetics.

[7]  Wei Li,et al.  Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus , 2014, The Journal of cell biology.

[8]  Mark I. McCarthy,et al.  Pancreatic islet enhancer clusters enriched in type 2 diabetes risk–associated variants , 2013, Nature Genetics.

[9]  Tanya M. Teslovich,et al.  Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico , 2013, Nature.

[10]  Søren Brunak,et al.  Whole-exome sequencing of 2,000 Danish individuals and the role of rare coding variants in type 2 diabetes. , 2013, American journal of human genetics.

[11]  Mark I. McCarthy,et al.  Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. , 2013, American journal of human genetics.

[12]  Jason Flannick,et al.  Evaluating empirical bounds on complex disease genetic architecture , 2013, Nature Genetics.

[13]  Yan He,et al.  A novel tetranucleotide repeat polymorphism within KCNQ1OT1 confers risk for hepatocellular carcinoma. , 2013, DNA and cell biology.

[14]  Wei Bao,et al.  Systematic Reviews and Meta-and Pooled Analyses Predicting Risk of Type 2 Diabetes Mellitus with Genetic Risk Models on the Basis of Established Genome-wide Association Markers : A Systematic Review , 2013 .

[15]  Pedro G. Ferreira,et al.  Transcriptome and genome sequencing uncovers functional variation in humans , 2013, Nature.

[16]  M. Laakso,et al.  Genetic Screening for the Risk of Type 2 Diabetes , 2013, Diabetes Care.

[17]  Jonathan C. Cohen Emerging LDL therapies: Using human genetics to discover new therapeutic targets for plasma lipids. , 2013, Journal of clinical lipidology.

[18]  Alexander A. Morgan,et al.  Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationships and Migration , 2013, PLoS genetics.

[19]  J. Danesh,et al.  Genome-Wide Association Study Identifies a Novel Locus Contributing to Type 2 Diabetes Susceptibility in Sikhs of Punjabi Origin From India , 2013, Diabetes.

[20]  Y. J. Kim,et al.  Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4 , 2013, Diabetologia.

[21]  M. McCarthy,et al.  Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets , 2013, Diabetes.

[22]  Jingyuan Fu,et al.  Human Disease-Associated Genetic Variation Impacts Large Intergenic Non-Coding RNA Expression , 2013, PLoS genetics.

[23]  M. Horikoshi,et al.  Variations with modest effects have an important role in the genetic background of type 2 diabetes and diabetes-related traits , 2012, Journal of Human Genetics.

[24]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[25]  Christopher D. Brown,et al.  Integrative Modeling of eQTLs and Cis-Regulatory Elements Suggests Mechanisms Underlying Cell Type Specificity of eQTLs , 2012, PLoS genetics.

[26]  M. Horikoshi,et al.  Variations with modest effects have an important role in the genetic background of type 2 diabetes and diabetes-related traits , 2012, Journal of Human Genetics.

[27]  Yusuke Nakamura,et al.  A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. , 2012, Human molecular genetics.

[28]  Robert J. Goodloe,et al.  Consistent Directions of Effect for Established Type 2 Diabetes Risk Variants Across Populations , 2012, Diabetes.

[29]  Peter Kraft,et al.  Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis , 2012, Nature Genetics.

[30]  Andre Franke,et al.  1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data , 2012, European Journal of Human Genetics.

[31]  E. Lander,et al.  The mystery of missing heritability: Genetic interactions create phantom heritability , 2012, Proceedings of the National Academy of Sciences.

[32]  Simon C. Potter,et al.  A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans , 2012, PLoS ONE.

[33]  Wei Lu,et al.  Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians , 2011, Nature Genetics.

[34]  A. Morris,et al.  Transethnic Meta-Analysis of Genomewide Association Studies , 2011, Genetic epidemiology.

[35]  Tien Yin Wong,et al.  Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci , 2011, Nature Genetics.

[36]  T. Hansen,et al.  The diabetogenic VPS13C/C2CD4A/C2CD4B rs7172432 variant impairs glucose-stimulated insulin response in 5,722 non-diabetic Danish individuals , 2011, Diabetologia.

[37]  Mark I McCarthy,et al.  Genomics, type 2 diabetes, and obesity. , 2010, The New England journal of medicine.

[38]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[39]  Yusuke Nakamura,et al.  A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B , 2010, Nature Genetics.

[40]  Y. J. Kim,et al.  Identification of New Genetic Risk Variants for Type 2 Diabetes , 2010, PLoS genetics.

[41]  Ayellet V. Segrè,et al.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.

[42]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[43]  Fuu-Jen Tsai,et al.  A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese , 2010, PLoS genetics.

[44]  Daniel F. Gudbjartsson,et al.  Parental origin of sequence variants associated with complex diseases , 2009, Nature.

[45]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[46]  P. Deloukas,et al.  Common Regulatory Variation Impacts Gene Expression in a Cell Type–Dependent Manner , 2009, Science.

[47]  Mark I McCarthy,et al.  Type 2 diabetes: new genes, new understanding. , 2008, Trends in genetics : TIG.

[48]  T. Hansen,et al.  SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations , 2008, Nature Genetics.

[49]  L. Groop,et al.  Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus , 2008, Nature Genetics.

[50]  M. McCarthy,et al.  Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes , 2008, Nature Genetics.

[51]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[52]  J. Gulcher,et al.  A variant in CDKAL1 influences insulin response and risk of type 2 diabetes , 2007, Nature Genetics.

[53]  M. McCarthy,et al.  Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes , 2007, Science.

[54]  Marcia M. Nizzari,et al.  Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels , 2007, Science.

[55]  T. Hudson,et al.  A genome-wide association study identifies novel risk loci for type 2 diabetes , 2007, Nature.

[56]  P. Froguel,et al.  A genetic variation of the transcription factor 7-like 2 gene is associated with risk of type 2 diabetes in the Japanese population , 2007, Diabetologia.

[57]  C. Julier,et al.  Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism , 2006, Nature Genetics.

[58]  S. Seino,et al.  Essential Role of Ubiquitin-Proteasome System in Normal Regulation of Insulin Secretion* , 2006, Journal of Biological Chemistry.

[59]  S. Bonner-Weir,et al.  Evidence for a Role of the Ubiquitin-Proteasome Pathway in Pancreatic Islets , 2006, Diabetes.

[60]  H. Stefánsson,et al.  Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes , 2006, Nature Genetics.

[61]  J. Ott,et al.  Complement Factor H Polymorphism in Age-Related Macular Degeneration , 2005, Science.

[62]  B. Glaser,et al.  p57Kip2 (cdkn1c): sequence, splice variants and unique temporal and spatial expression pattern in the rat pancreas , 2005, Laboratory Investigation.

[63]  W. Gold,et al.  A novel gene family induced by acute inflammation in endothelial cells. , 2004, Gene.

[64]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[65]  C. Molony,et al.  Genetic analysis of genome-wide variation in human gene expression , 2004, Nature.

[66]  Toshihiro Tanaka The International HapMap Project , 2003, Nature.

[67]  N. Risch,et al.  Genomic Priorities and Public Health , 2003, Science.

[68]  J. Gulcher,et al.  Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2. , 2003, American journal of human genetics.

[69]  P. O'Connell,et al.  Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. , 1999, American journal of human genetics.

[70]  R. Quatrano Genomics , 1998, Plant Cell.

[71]  P. Coumel,et al.  A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome , 1997, Nature Genetics.

[72]  T. Hansen,et al.  Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3) , 1996, Nature.

[73]  D. Accili,et al.  A Novel Human Insulin Receptor Gene Mutation Uniquely Inhibits Insulin Binding Without Impairing Posttranslational Processing , 1994, Diabetes.

[74]  R. Sakuta,et al.  A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. , 1994, The New England journal of medicine.

[75]  Simeon I. Taylor,et al.  Two mutant alleles of the insulin receptor gene in a patient with extreme insulin resistance. , 1988, Science.

[76]  A. Kosaki,et al.  Insulin-resistant diabetes due to a point mutation that prevents insulin proreceptor processing. , 1988, Science.

[77]  M. King,et al.  Concordance for Type 2 (non-insulin-dependent) diabetes mellitus in male twins , 1987, Diabetologia.

[78]  H. Keen The genetics of diabetes: from nightmare to headache. , 1987, British medical journal.

[79]  R. Ophoff,et al.  University of Groningen Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression , 2017 .

[80]  Todd A. Johnson,et al.  Genome-wide association study identifies three novel loci for type 2 diabetes. , 2014, Human molecular genetics.

[81]  Tanya M. Teslovich,et al.  Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014 .

[82]  A map of human genome variation from population scale sequencing , 2012 .

[83]  Yusuke Nakamura,et al.  JSNP: a database of common gene variations in the Japanese population , 2002, Nucleic Acids Res..

[84]  F. Takaku [Overview on the millennium genome project]. , 2001, Nihon rinsho. Japanese journal of clinical medicine.

[85]  G. Landes,et al.  Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias , 1996, Nature Genetics.

[86]  M. Stoffel,et al.  Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1) , 1996, Nature.

[87]  J. Neel Diabetes Mellitus — A Geneticist’s Nightmare , 1976 .

[88]  G. Abecasis,et al.  Supporting Online Material Materials and Methods Figs. S1 to S8 Tables S1 to S10 References a Genome-wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants , 2022 .