Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial

The realization of high-performance tunable absorbers for terahertz frequencies is crucial for advancing applications such as single-pixel imaging and spectroscopy. Based on the strong position sensitivity of metamaterials’ electromagnetic response, we combine meta-atoms that support strongly localized modes with suspended flat membranes that can be driven electrostatically. This design maximizes the tunability range for small mechanical displacements of the membranes. We employ a micro-electro-mechanical system technology and successfully fabricate the devices. Our prototype devices are among the best-performing tunable THz absorbers demonstrated to date, with an ultrathin device thickness (~1/50 of the working wavelength), absorption varying between 60% and 80% in the initial state when the membranes remain suspended, and fast switching speed (~27 μs). The absorption is tuned by an applied voltage, with the most marked results achieved when the structure reaches the snap-down state. In this case, the resonance shifts by >200% of the linewidth (14% of the initial resonance frequency), and the absolute absorption modulation measured at the initial resonance can reach 65%. The demonstrated approach can be further optimized and extended to benefit numerous applications in THz technology.

[1]  David R. Smith,et al.  Negative refractive index in left-handed materials. , 2000, Physical review letters.

[2]  C. Ho,et al.  Microelectromechanically reconfigurable interpixelated metamaterial for independent tuning of multiple resonances at terahertz spectral region , 2015 .

[3]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[4]  Michael Wraback,et al.  Optically Modulated Multiband Terahertz Perfect Absorber , 2014 .

[5]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[6]  Willie J. Padilla,et al.  Dynamic electromagnetic metamaterials , 2015 .

[7]  F. Costa,et al.  A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers , 2013, IEEE Transactions on Antennas and Propagation.

[8]  Chengkuo Lee,et al.  Micro-electro-mechanically switchable near infrared complementary metamaterial absorber , 2014 .

[9]  Huili Grace Xing,et al.  Terahertz imaging employing graphene modulator arrays. , 2013, Optics express.

[10]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[11]  Tetsuo Kan,et al.  Spiral metamaterial for active tuning of optical activity , 2013 .

[12]  Gwyn P. Williams Filling the THz gap—high power sources and applications , 2006 .

[13]  Weili Zhang,et al.  A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array , 2016 .

[14]  Wai Lam Chan,et al.  A spatial light modulator for terahertz beams , 2009 .

[15]  A. Kildishev,et al.  Optical black hole: Broadband omnidirectional light absorber , 2009 .

[16]  T. Bourouina,et al.  Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy , 2012, Nature Communications.

[17]  Xiaoguang Zhao,et al.  Voltage-tunable dual-layer terahertz metamaterials , 2016, Microsystems & Nanoengineering.

[18]  Willie J. Padilla,et al.  Electrically resonant terahertz metamaterials: Theoretical and experimental investigations , 2007 .

[19]  Mikhail Lapine,et al.  Spontaneous chiral symmetry breaking in metamaterials , 2014, Nature Communications.

[20]  David A. Powell,et al.  Tunable Meta‐Liquid Crystals , 2016, Advanced materials.

[21]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[22]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[23]  Willie J. Padilla,et al.  Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials , 2013 .

[24]  Yuri S. Kivshar,et al.  Nonlinear response via intrinsic rotation in metamaterials , 2013 .

[25]  Chengkuo Lee,et al.  Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices , 2016 .

[26]  K. Silva,et al.  Ge/ZnS-Based Micromachined Fabry–Perot Filters for Optical MEMS in the Longwave Infrared , 2015, Journal of Microelectromechanical Systems.

[27]  L. Faraone,et al.  Dielectric thin films for MEMS-based optical sensors , 2007, Microelectron. Reliab..

[28]  Chengkuo Lee,et al.  Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array , 2014, Light: Science & Applications.

[29]  Ai Qun Liu,et al.  Switchable Magnetic Metamaterials Using Micromachining Processes , 2011, Advanced materials.

[30]  I. Shimoyama,et al.  Out-of-plane actuation with a sub-micron initial gap for reconfigurable terahertz micro-electro-mechanical systems metamaterials. , 2015, Optics express.

[31]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[32]  Sergei A. Tretyakov,et al.  Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations , 2015 .

[33]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[34]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics Express.

[35]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[36]  Ming C. Wu,et al.  Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers , 2016 .

[37]  Yan Zhang,et al.  Spatial Terahertz Modulator , 2013, Scientific Reports.

[38]  Yixian Qian,et al.  Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array , 2013 .

[39]  Yuri S. Kivshar,et al.  Metamaterial tuning by manipulation of near-field interaction , 2009, 0912.1152.

[40]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[41]  Chengkuo Lee,et al.  Active Control of Electromagnetically Induced Transparency Analog in Terahertz MEMS Metamaterial , 2016 .

[42]  Hiroyuki Fujita,et al.  MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. , 2014, Optics express.

[43]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[44]  D. Tsai,et al.  Micromachined tunable metamaterials: a review , 2012 .

[45]  Abul K. Azad,et al.  Manipulation of terahertz radiation using metamaterials , 2011 .

[46]  L. Faraone,et al.  Monolithic integration of an infrared photon detector with a MEMS-based tunable filter , 2005, IEEE Electron Device Letters.

[47]  Guo-Qiang Lo,et al.  A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Split‐Ring Resonators , 2011 .

[48]  Remigius Zengerle,et al.  Negative index bulk metamaterial at terahertz frequencies. , 2008, Optics express.

[49]  Han Yan,et al.  Electrostatic pull-in instability in MEMS/NEMS: A review , 2014 .

[50]  L. Faraone,et al.  Widely Tunable MEMS-Based Fabry–Perot Filter , 2009, Journal of Microelectromechanical Systems.

[51]  L. Coldren,et al.  Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors , 1989, IEEE Photonics Technology Letters.

[52]  Yuri Kivshar,et al.  Structural tunability in metamaterials , 2009, 0907.2303.

[53]  Mariusz Martyniuk,et al.  Recent advances in SWIR MEMS-based tunable Fabry-Pérot microspectrometers , 2011, Defense + Commercial Sensing.

[54]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .