Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes

[1]  D. Bélanger,et al.  Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors , 2001 .

[2]  D. Schuster,et al.  High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. , 2001, Journal of the American Chemical Society.

[3]  Junhua Jiang,et al.  Electrochemical supercapacitor material based on manganese oxide: preparation and characterization , 2002 .

[4]  Xiaohong Li,et al.  Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites , 2004 .

[5]  Soojin Park,et al.  A study of oxyfluorination of multi-walled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites , 2004 .

[6]  Soo-Jin Park,et al.  Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multi-walled carbon nanotubes , 2005 .

[7]  A. Ramanavičius,et al.  Conducting polymer-based nanostructurized materials: electrochemical aspects , 2005, Nanotechnology.

[8]  F. Béguin,et al.  Supercapacitors based on conducting polymers/nanotubes composites , 2006 .

[9]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[10]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[11]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[12]  Ki Chul Park,et al.  Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors , 2007 .

[13]  E. Morallón,et al.  Polyaniline/porous carbon electrodes by chemical polymerisation: Effect of carbon surface chemistry , 2007 .

[14]  Bin Dong,et al.  Preparation and electrochemical characterization of polyaniline/ multi-walled carbon nanotubes composites for supercapacitor , 2007 .

[15]  Bin Xu,et al.  Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity , 2008 .

[16]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[17]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[18]  C. Fonseca,et al.  Synthesis and characterization of hybrid composites based on carbon nanotubes , 2009 .

[19]  Bin Wang,et al.  In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors , 2009 .

[20]  Hao Zhang,et al.  Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes , 2009 .

[21]  Soojin Park,et al.  Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes , 2010 .

[22]  F. Wei,et al.  Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance , 2010 .

[23]  Soojin Park,et al.  Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites , 2010 .

[24]  Seung-Beom Yoon,et al.  Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/m , 2011 .

[25]  Soojin Park,et al.  Influence of carbon shell structure on electrochemical performance of multi-walled carbon nanotube electrodes. , 2013, Analytica chimica acta.

[26]  João Peças Lopes,et al.  Characterisation of electrical energy storage technologies , 2013 .

[27]  K. An,et al.  Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation , 2014 .

[28]  C. Das,et al.  Preparation and electrochemical characterization of polyaniline functionalized copper bridges carbon nanotube for supercapacitor applications. , 2014, Journal of nanoscience and nanotechnology.

[29]  Soojin Park,et al.  Effect of microporosity on nitrogen-doped microporous carbons for electrode of supercapacitor , 2014 .

[30]  D. Gui,et al.  Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor , 2014 .

[31]  Aldo J. G. Zarbin,et al.  Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces , 2014 .

[32]  Tiezhu Zhang,et al.  Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability , 2014 .

[33]  Hyunsik Im,et al.  Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes , 2014 .

[34]  C. Das,et al.  Silver Nanoparticles Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode , 2014 .

[35]  Wenling Wu,et al.  Preparation and characterization of coaxial multiwalled carbon nanotubes/polyaniline tubular nanocomposites for electrochemical energy storage in the presence of sodium alginate , 2014 .