DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes

[1]  G. Getz,et al.  High-order chromatin architecture shapes the landscape of chromosomal alterations in cancer , 2012 .

[2]  Alan Hodgkinson,et al.  The large‐scale distribution of somatic mutations in cancer genomes , 2012, Human mutation.

[3]  Zhengyan Kan,et al.  Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer , 2011, Nature Genetics.

[4]  S. De,et al.  DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes , 2011, Nature Biotechnology.

[5]  Manolis Kellis,et al.  Locating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes. , 2011, Genome research.

[6]  C. Kimchi-Sarfaty,et al.  Understanding the contribution of synonymous mutations to human disease , 2011, Nature Reviews Genetics.

[7]  Kristian Cibulskis,et al.  Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion , 2011, Nature Genetics.

[8]  Juliane C. Dohm,et al.  Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia , 2011, Nature.

[9]  Christopher D. Brown,et al.  Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data , 2011, Proceedings of the National Academy of Sciences.

[10]  A. McKenna,et al.  The Mutational Landscape of Head and Neck Squamous Cell Carcinoma , 2011, Science.

[11]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[12]  Trevor J Pugh,et al.  Initial genome sequencing and analysis of multiple myeloma , 2011, Nature.

[13]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[14]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[15]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[16]  Amos Tanay,et al.  Comparative Analysis of DNA Replication Timing Reveals Conserved Large-Scale Chromosomal Architecture , 2010, PLoS genetics.

[17]  S. Dalton,et al.  Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. , 2010, Genome research.

[18]  A. Sparks,et al.  The mutation spectrum revealed by paired genome sequences from a lung cancer patient , 2010, Nature.

[19]  Elias Campo Guerri,et al.  International network of cancer genome projects , 2010, Nature.

[20]  Laurent Farinelli,et al.  Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. , 2010, Genome research.

[21]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[22]  T. Halazonetis,et al.  Genomic instability — an evolving hallmark of cancer , 2010, Nature Reviews Molecular Cell Biology.

[23]  E. Birney,et al.  A small cell lung cancer genome reports complex tobacco exposure signatures , 2009, Nature.

[24]  Tom Royce,et al.  A comprehensive catalogue of somatic mutations from a human cancer genome , 2010, Nature.

[25]  M. Lynch Rate, molecular spectrum, and consequences of human mutation , 2010, Proceedings of the National Academy of Sciences.

[26]  Michael O Dorschner,et al.  Sequencing newly replicated DNA reveals widespread plasticity in human replication timing , 2009, Proceedings of the National Academy of Sciences.

[27]  Jonathan M. Mudge,et al.  The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. , 2009, Genome research.

[28]  J. Stamatoyannopoulos,et al.  Human mutation rate associated with DNA replication timing , 2009, Nature Genetics.

[29]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[30]  W. Wang,et al.  UTRN on chromosome 6q24 is mutated in multiple tumors , 2007, Oncogene.

[31]  E. Birney,et al.  Patterns of somatic mutation in human cancer genomes , 2007, Nature.

[32]  C. Maley,et al.  Cancer is a disease of clonal evolution within the body1–3. This has profound clinical implications for neoplastic progression, cancer prevention and cancer therapy. Although the idea of cancer as an evolutionary problem , 2006 .

[33]  J. Harrow,et al.  GENCODE: producing a reference annotation for ENCODE , 2006, Genome Biology.

[34]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Nowak,et al.  Dynamics of cancer progression , 2004, Nature Reviews Cancer.

[36]  Owen T McCann,et al.  Replication timing of the human genome. , 2004, Human molecular genetics.

[37]  Martin J Lercher,et al.  Human SNP variability and mutation rate are higher in regions of high recombination. , 2002, Trends in genetics : TIG.

[38]  S. Henikoff,et al.  Predicting deleterious amino acid substitutions. , 2001, Genome research.

[39]  M. Daly,et al.  A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms , 2001, Nature.

[40]  H. A. Orr,et al.  ADAPTATION AND THE COST OF COMPLEXITY , 2000, Evolution; international journal of organic evolution.

[41]  Jeffrey M. Wooldridge,et al.  Introductory Econometrics: A Modern Approach , 1999 .

[42]  D C Shields,et al.  Chromosomal location and evolutionary rate variation in enterobacterial genes. , 1989, Science.

[43]  P. Nowell The clonal evolution of tumor cell populations. , 1976, Science.