Spontaneous Formation of Lead-Free Cs3 Cu2 I5  Quantum Dots in Metal-Organic-Frameworks with Deep-Blue Emission.

All-inorganic lead-free Cs3 Cu2 I5  perovskite-derivant quantum dots (QDs) have attracted tremendous attention due to their nontoxicity and unique optoelectronic properties. However, the traditional hot-injection method requires high temperatures and multiple ligands to confine the growth of QDs. Herein, a strategy is reported to spontaneously synthesize ultrasmall Cs3 Cu2 I5  QDs within metal-organic-frameworks (MOFs) MOF-74 at room temperature (RT) with an average diameter of 4.33 nm. The obtained Cs3 Cu2 I5  QDs exhibit an evident deep-blue emission with Commission Internationale de L'Eclairage coordinates of (0.17, 0.07), owing to the strong quantum confinement effect. Due to the protection of MOF-74, the Cs3 Cu2 I5  QDs demonstrate superior stability, and the photoluminescence quantum yield retains 89% of the initial value after the storage of 1440 h under the environment with relative humidity exceeding 70%. Besides, triplet-triplet annihilation upconversion emission is observed within the composite of Cs3 Cu2 I5 @MOF-74, which brings out apparent temperature-dependent photoluminescence. This study reveals a facile method for fabricating ultrasmall lead-free perovskite-derivant QDs at RT without multiple ligands. Besides, the temperature-dependent photoluminescence of Cs3 Cu2 I5 @MOF-74 may open up a new way to develop the applications of temperature sensors or other related optoelectronic devices.

[1]  M. Zhang,et al.  Promising Lead-Free Double-Perovskite Photovoltaic Materials Cs2MM′Br6 (M = Cu, Ag, and Au; M′ = Ga, In, Sb, and Bi) with an Ideal Band Gap and High Power Conversion Efficiency , 2021, The Journal of Physical Chemistry C.

[2]  G. Wiederrecht,et al.  Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal–organic frameworks , 2021, Nature Photonics.

[3]  Zhiqun Lin,et al.  Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites , 2021, Advanced materials.

[4]  W. Kang,et al.  Solution‐Processed Lead‐Free Perovskite Nanocrystal Scintillators for High‐Resolution X‐Ray CT Imaging , 2021, Advanced Optical Materials.

[5]  Liping Li,et al.  CsCu2I3 Nanocrystals: Growth and Structural Evolution for Tunable Light Emission , 2020, ACS omega.

[6]  Sudip Kumar Batabyal,et al.  Recent advances of lead-free metal halide perovskite single crystals and nanocrystals: synthesis, crystal structure, optical properties, and their diverse applications , 2020 .

[7]  H. Zeng,et al.  Lead‐Free Halide Double Perovskites: Structure, Luminescence, and Applications , 2020, Small Structures.

[8]  Hua Zhao,et al.  Ultrastable perovskite-zeolite composite enabled by encapsulation and in situ passivation. , 2020, Angewandte Chemie.

[9]  H. Zeng,et al.  A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes , 2020, Nature Communications.

[10]  E. Kumacheva,et al.  Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots , 2020, Nature Nanotechnology.

[11]  Jianyu Yuan,et al.  Surface Ligand Management Aided by a Secondary Amine Enables Increased Synthesis Yield of CsPbI3 Perovskite Quantum Dots and High Photovoltaic Performance , 2020, Advanced materials.

[12]  Yuhua Wang,et al.  Dual-emitting CsPbX3@ZJU-28 (X = Cl, Br, I) composites with enhanced stability and unique optical properties for multifunctional applications , 2020 .

[13]  Wanbin Li,et al.  Metal Halide Perovskite Nanocrystals in Metal-Organic Framework Host: Not Merely Enhanced Stability. , 2020, Angewandte Chemie.

[14]  Zhengxiao Guo,et al.  Flexible and Self‐Powered Photodetector Arrays Based on All‐Inorganic CsPbBr3 Quantum Dots , 2020, Advanced materials.

[15]  Guangda Niu,et al.  Efficient and Reabsorption‐Free Radioluminescence in Cs3Cu2I5 Nanocrystals with Self‐Trapped Excitons , 2020, Advanced science.

[16]  C. Shan,et al.  Colloidal Synthesis of Ternary Copper Halides Nanocrystals for High-Efficiency Deep-Blue Light-Emitting Diodes with a Half-Lifetime Above 100 Hours. , 2020, Nano letters.

[17]  Xin Jian Li,et al.  Stable Yellow Light-Emitting Devices Based on Ternary Copper Halides with Broadband Emissive Self-Trapped Excitons. , 2020, ACS nano.

[18]  Bingqiang Cao,et al.  Stable CsPbBr3:Sn@SiO2 and Cs4PbBr6:Sn@SiO2 Core–Shell Quantum Dots with Tunable Color Emission for Light-Emitting Diodes , 2020 .

[19]  Yejing Liu,et al.  0D Cs3 Cu2 X5 (X = I, Br, and Cl) Nanocrystals: Colloidal Syntheses and Optical Properties. , 2019, Small.

[20]  H. Zeng,et al.  Shining Emitter in Stable Host: Design Halide Perovskite Scintillators for X-Ray Imaging from Commercial Concept. , 2019, ACS nano.

[21]  Lei Sun,et al.  Colloidal Synthesis and Optical Properties of All-Inorganic Low-Dimensional Cesium Copper Halide Nanocrystals. , 2019, Angewandte Chemie.

[22]  Chun-Che Lin,et al.  Phase transition and energy transfer of lead-free Cs2SnCl6 perovskite nanocrystals by controlling the precursors and doping manganese ions , 2019, Journal of Information Display.

[23]  H. Nhalil,et al.  Near-Unity Photoluminescence Quantum Yield in Blue-Emitting Cs3Cu2Br5–xIx (0 ≤ x ≤ 5) , 2019, ACS Applied Electronic Materials.

[24]  Ronnie H. Fang,et al.  Biomembrane-Modified Field Effect Transistors for Sensitive and Quantitative Detection of Biological Toxins and Pathogens. , 2019, ACS nano.

[25]  A. Malko,et al.  Metal Halide Perovskite Nanosheet for X-ray High-Resolution Scintillation Imaging Screens. , 2019, ACS nano.

[26]  H. Hosono,et al.  Lead‐Free Highly Efficient Blue‐Emitting Cs3Cu2I5 with 0D Electronic Structure , 2018, Advanced materials.

[27]  Xu Zhao,et al.  Persulfate enhanced photoelectrocatalytic degradation of cyanide using a CuFe2O4 modified graphite felt cathode , 2018, Chemical Engineering Journal.

[28]  Weidong Song,et al.  Synthesis of Lead-free CsGeI3 Perovskite Colloidal Nanocrystals and Electron Beam-induced Transformations. , 2018, Chemistry, an Asian journal.

[29]  Xuhui Xu,et al.  In Situ Crystallization Synthesis of CsPbBr3 Perovskite Quantum Dot-Embedded Glasses with Improved Stability for Solid-State Lighting and Random Upconverted Lasing. , 2018, ACS applied materials & interfaces.

[30]  Lin-wang Wang,et al.  Strongly Quantum Confined Colloidal Cesium Tin Iodide Perovskite Nanoplates: Lessons for Reducing Defect Density and Improving Stability. , 2018, Nano letters (Print).

[31]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[32]  Wanbin Li,et al.  Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption , 2017, Nature Communications.

[33]  Emad Oveisi,et al.  CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat. , 2017, Angewandte Chemie.

[34]  Jian Zhang,et al.  A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film. , 2016, ACS applied materials & interfaces.

[35]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[36]  William W. Yu,et al.  Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. , 2016, Journal of the American Chemical Society.

[37]  Richard H. Friend,et al.  Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. , 2016, Journal of the American Chemical Society.

[38]  A. Sam,et al.  Mg-MOF-74 nanostructures: facile synthesis and characterization with aid of 2,6-pyridinedicarboxylic acid ammonium , 2016, Journal of Materials Science: Materials in Electronics.

[39]  M. Cölle,et al.  Phosphorescence and electrophosphorescence in thin films of tris-(8-hydoxyquinoline)aluminum(III) (Alq3) , 2004 .

[40]  Tao Wu,et al.  Is the blue shift of C–H vibration in DMF–water mixture mainly caused by C–H⋯O interaction? , 2004 .

[41]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[42]  J. Tauc,et al.  Optical properties and electronic structure of amorphous Ge and Si , 1968 .