Anisotropic spherical Gaussians

We present a novel anisotropic Spherical Gaussian (ASG) function, built upon the Bingham distribution [Bingham 1974], which is much more effective and efficient in representing anisotropic spherical functions than Spherical Gaussians (SGs). In addition to retaining many desired properties of SGs, ASGs are also rotationally invariant and capable of representing all-frequency signals. To further strengthen the properties of ASGs, we have derived approximate closed-form solutions for their integral, product and convolution operators, whose errors are nearly negligible, as validated by quantitative analysis. Supported by all these operators, ASGs can be adapted in existing SG-based applications to enhance their scalability in handling anisotropic effects. To demonstrate the accuracy and efficiency of ASGs in practice, we have applied ASGs in two important SG-based rendering applications and the experimental results clearly reveal the merits of ASGs.

[1]  R. Ramamoorthi,et al.  Frequency domain normal map filtering , 2007, SIGGRAPH 2007.

[2]  Peter Shirley,et al.  An Anisotropic Phong BRDF Model , 2000, J. Graphics, GPU, & Game Tools.

[3]  Marc Olano,et al.  LEAN mapping , 2010, I3D '10.

[4]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[5]  Steve Marschner,et al.  Specular reflection from woven cloth , 2012, TOGS.

[6]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[7]  Kei Iwasaki,et al.  Interactive bi-scale editing of highly glossy materials , 2012, ACM Trans. Graph..

[8]  Henrik Wann Jensen,et al.  A practical microcylinder appearance model for cloth rendering , 2013, TOGS.

[9]  Holly E. Rushmeier,et al.  Physically-based interactive bi-scale material design , 2011, ACM Trans. Graph..

[10]  John M. Snyder,et al.  All-frequency rendering of dynamic, spatially-varying reflectance , 2009, SIGGRAPH 2009.

[11]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[12]  R. Fisher Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[14]  Zen-Chung Shih,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, ACM Trans. Graph..

[15]  László Szirmay-Kalos,et al.  An anisotropic BRDF model for fitting and Monte Carlo rendering , 2010, COMG.

[16]  James T. Kajiya,et al.  The rendering equation , 1998 .

[17]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[18]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[19]  Kei Iwasaki,et al.  Real‐time Rendering of Dynamic Scenes under All‐frequency Lighting using Integral Spherical Gaussian , 2012, Comput. Graph. Forum.

[20]  Adrien Bousseau,et al.  Real-Time Rendering of Rough Refraction , 2012, IEEE Transactions on Visualization and Computer Graphics.

[21]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[22]  Rui Wang,et al.  Fast Estimation and Rendering of Indirect Highlights , 2010, Comput. Graph. Forum.

[23]  Christopher Bingham An Antipodally Symmetric Distribution on the Sphere , 1974 .

[24]  Frédo Durand,et al.  View-dependent precomputed light transport using nonlinear Gaussian function approximations , 2006, I3D '06.

[25]  John M. Snyder,et al.  Manifold bootstrapping for SVBRDF capture , 2010, ACM Trans. Graph..

[26]  J. Kent The Fisher‐Bingham Distribution on the Sphere , 1982 .

[27]  James T. Kajiya,et al.  Anisotropic reflection models , 1985, SIGGRAPH.

[28]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[29]  Peter Shirley,et al.  The halfway vector disk for BRDF modeling , 2006, TOGS.

[30]  K. Bala,et al.  A radiative transfer framework for rendering materials with anisotropic structure , 2010, SIGGRAPH 2010.

[31]  Shi-Min Hu,et al.  Spherical Piecewise Constant Basis Functions for All-Frequency Precomputed Radiance Transfer , 2008, IEEE Transactions on Visualization and Computer Graphics.

[32]  Frédo Durand,et al.  Efficient Reflectance and Visibility Approximations for Environment Map Rendering , 2007, Comput. Graph. Forum.

[33]  Wojciech Matusik,et al.  Inverse shade trees for non-parametric material representation and editing , 2006, ACM Trans. Graph..

[34]  John M. Snyder,et al.  Modeling anisotropic surface reflectance with example-based microfacet synthesis , 2008, SIGGRAPH 2008.

[35]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[36]  Rui Wang,et al.  Accurate Translucent Material Rendering under Spherical Gaussian Lights , 2012, Comput. Graph. Forum.

[37]  Steve Marschner,et al.  Structure-aware synthesis for predictive woven fabric appearance , 2012, ACM Trans. Graph..

[38]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[39]  Bo Ren,et al.  Interactive hair rendering and appearance editing under environment lighting , 2011, ACM Trans. Graph..

[40]  Kun Zhou,et al.  Radiance Transfer Biclustering for Real-Time All-Frequency Biscale Rendering , 2011, IEEE Transactions on Visualization and Computer Graphics.

[41]  Pierre Poulin,et al.  Rational BRDF , 2012, IEEE Transactions on Visualization and Computer Graphics.