THE JCMT GOULD BELT SURVEY: EVIDENCE FOR DUST GRAIN EVOLUTION IN PERSEUS STAR-FORMING CLUMPS

The dust emissivity spectral index, β, is a critical parameter for deriving the mass and temperature of star-forming structures and, consequently, their gravitational stability. The β value is dependent on various dust grain properties, such as size, porosity, and surface composition, and is expected to vary as dust grains evolve. Here we present β, dust temperature, and optical depth maps of the star-forming clumps in the Perseus Molecular Cloud determined from fitting spectral energy distributions to combined Herschel and JCMT observations in the 160, 250, 350, 500, and 850 μm bands. Most of the derived β and dust temperature values fall within the ranges of 1.0–2.7 and 8–20 K, respectively. In Perseus, we find the β distribution differs significantly from clump to clump, indicative of grain growth. Furthermore, we also see significant localized β variations within individual clumps and find low-β regions correlate with local temperature peaks, hinting at the possible origins of low-β grains. Throughout Perseus, we also see indications of heating from B stars and embedded protostars, as well evidence of outflows shaping the local landscape.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  J. Francesco,et al.  Dust emissivity in the star-forming filament OMC 2/3 (Corrigendum) , 2016, Astronomy & Astrophysics.

[3]  Leslie W. Looney,et al.  THE VLA NASCENT DISK AND MULTIPLICITY SURVEY OF PERSEUS PROTOSTARS (VANDAM). II. MULTIPLICITY OF PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD , 2016, 1601.00692.

[4]  D. Johnstone,et al.  YOUNG STELLAR OBJECTS IN THE GOULD BELT , 2015, 1508.03199.

[5]  N. Peretto,et al.  A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey , 2015, 1507.05926.

[6]  E. Rosolowsky,et al.  The JCMT Gould Belt Survey: constraints on prestellar core properties in Orion A North , 2015 .

[7]  J. Francesco,et al.  Evidence for large grains in the star-forming filament OMC 2/3 , 2014, 1408.5429.

[8]  Per Friberg,et al.  SCUBA-2: an update on the performance of the 10,000 pixel bolometer camera after two years of science operation at the JCMT , 2014, Astronomical Telescopes and Instrumentation.

[9]  L. Testi,et al.  Grain growth in the envelopes and disks of Class I protostars , 2014, 1405.0821.

[10]  N. Peretto,et al.  CLASS 0 PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD: A CORRELATION BETWEEN THE YOUNGEST PROTOSTARS AND THE DENSE GAS DISTRIBUTION , 2014, 1404.7142.

[11]  M. Sauvage,et al.  The Herschel-PACS photometer calibration , 2013, 1309.6099.

[12]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[13]  S. Corder,et al.  CARMA OBSERVATIONS OF PROTOSTELLAR OUTFLOWS IN NGC 1333 , 2013, 1307.3558.

[14]  M. J. Griffin,et al.  Flux calibration of the Herschel-SPIRE photometer , 2013, 1306.1217.

[15]  A. Duarte-Cabral,et al.  THE HERSCHEL AND JCMT GOULD BELT SURVEYS: CONSTRAINING DUST PROPERTIES IN THE PERSEUS B1 CLUMP WITH PACS, SPIRE, AND SCUBA-2 , 2013, 1303.1529.

[16]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[17]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[18]  J. Richer,et al.  The JCMT Gould Belt Survey: SCUBA-2 observations of radiative feedback in NGC 1333 , 2012, 1210.5094.

[19]  H'elene Roussel,et al.  Scanamorphos: A Map-making Software for Herschel and Similar Scanning Bolometer Arrays , 2012, 1205.2576.

[20]  A. Giorgio,et al.  Herschel observations of B1-bS and B1-bN: two first hydrostatic core candidates in the Perseus star-forming cloud , 2012, 1209.5290.

[21]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[22]  J. Tobin,et al.  THE ENVELOPE AND EMBEDDED DISK AROUND THE CLASS 0 PROTOSTAR L1157-mm: DUAL-WAVELENGTH INTERFEROMETRIC OBSERVATIONS AND MODELING , 2012, 1207.3843.

[23]  D. Johnstone,et al.  Molecular line contamination in the SCUBA-2 450 and 850 μm continuum data , 2012, 1204.6180.

[24]  A. Goodman,et al.  DUST SPECTRAL ENERGY DISTRIBUTIONS IN THE ERA OF HERSCHEL AND PLANCK: A HIERARCHICAL BAYESIAN-FITTING TECHNIQUE , 2012, 1203.0025.

[25]  Peter G. Martin,et al.  Evolution of dust in the Orion Bar with Herschel , 2012, 1202.1624.

[26]  M. Halpern,et al.  EVIDENCE FOR ENVIRONMENTAL CHANGES IN THE SUBMILLIMETER DUST OPACITY , 2011, 1112.5433.

[27]  N. Peretto,et al.  Herschel Observations of a Potential Core-Forming Clump: Perseus B1-E , 2011, 1111.7021.

[28]  The University of Manchester,et al.  Spitzer characterization of dust in an anomalous emission region: the Perseus cloud , 2011, Monthly Notices of the Royal Astronomical Society.

[29]  G. Park,et al.  Radio Imaging of the NGC 1333 IRAS 4A Region: Envelope, Disks, and Outflows of a Protostellar Binary System , 2011, 1107.3877.

[30]  P. A. R. Ade,et al.  Planckearly results. XXV. Thermal dust in nearby molecular clouds , 2011, Astronomy & Astrophysics.

[31]  D. E. Bolin,et al.  MUSTANG 3.3 mm CONTINUUM OBSERVATIONS OF CLASS 0 PROTOSTARS , 2010, 1011.3817.

[32]  J. G. Jernigan,et al.  Astronomical Data Analysis Software and Systems XX , 2011 .

[33]  Douglas Scott,et al.  JCMT Telescope Control System upgrades for SCUBA-2 , 2010, Astronomical Telescopes + Instrumentation.

[34]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[35]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[36]  Michelle A. Borkin,et al.  THE COMPLETE SURVEY OF OUTFLOWS IN PERSEUS , 2010, 1005.1714.

[37]  J. Foster,et al.  THE DUST EMISSIVITY SPECTRAL INDEX IN THE STARLESS CORE TMC-1C , 2009, 0911.0892.

[38]  T. Jenness,et al.  HARP/ACSIS: a submillimetre spectral imaging system on the James Clerk Maxwell Telescope , 2009, 0907.3610.

[39]  A. Goodman,et al.  THE EFFECT OF LINE-OF-SIGHT TEMPERATURE VARIATION AND NOISE ON DUST CONTINUUM OBSERVATIONS , 2009, 0902.3477.

[40]  L. Mundy,et al.  GRAIN GROWTH AND DENSITY DISTRIBUTION OF THE YOUNGEST PROTOSTELLAR SYSTEMS , 2009, 0902.2008.

[41]  A. Goodman,et al.  THE EFFECT OF NOISE ON THE DUST TEMPERATURE–SPECTRAL INDEX CORRELATION , 2009, 0902.0636.

[42]  E. Rosolowsky,et al.  THE GAS TEMPERATURE OF STARLESS CORES IN PERSEUS , 2008, 0809.5256.

[43]  N. Evans,et al.  PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS , 2008, 0809.4012.

[44]  B. Reipurth Handbook of Star Forming Regions, Volume I: The Northern Sky , 2008 .

[45]  A. Goodman,et al.  The Perseus Cloud , 2008 .

[46]  Michael Connelley,et al.  THE EVOLUTION OF THE MULTIPLICITY OF EMBEDDED PROTOSTARS. I. SAMPLE PROPERTIES AND BINARY DETECTIONS , 2008, 0803.1656.

[47]  S. Sakai,et al.  Astrometry of H2O Masers in Nearby Star-Forming Regions with VERA II SVS 13 in NGC 1333 , 2008 .

[48]  J. Foster,et al.  An Ammonia Spectral Atlas of Dense Cores in Perseus , 2007, 0711.0231.

[49]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[50]  A. Whitworth,et al.  The James Clerk Maxwell Telescope Legacy Survey of Nearby Star‐forming Regions in the Gould Belt , 2007, 0707.0169.

[51]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[52]  M. Yang,et al.  350 μm Observations of Local Luminous Infrared Galaxies and the Temperature Dependence of the Emissivity Index , 2007, astro-ph/0702466.

[53]  J. Bally,et al.  Multigenerational Star Formation in L1551 , 2005, astro-ph/0512351.

[54]  D. Johnstone,et al.  The effect of a strong external radiation field on protostellar envelopes in Orion , 2005, astro-ph/0512314.

[55]  J. Bernard,et al.  Temperature Dependence of the Submillimeter Absorption Coefficient of Amorphous Silicate Grains , 2005 .

[56]  E. F. Ladd,et al.  Star formation in Perseus - Clusters, filaments and the conditions for star formation , 2005 .

[57]  D. Johnstone,et al.  Fourier transform spectroscopy of the submillimetre continuum emission from hot molecular cores , 2005, astro-ph/0505331.

[58]  J. Rawlings,et al.  Modeling the Physical Structure of the Low-Density Pre-Protostellar Core Lynds 1498 , 2005, astro-ph/0505171.

[59]  A. Frank,et al.  Turbulence Driven by Outflow-blown Cavities in the Molecular Cloud of NGC 1333 , 2005, astro-ph/0503167.

[60]  P. Barthel PROCEEDINGS OF THE DUSTY AND MOLECULAR UNIVERSE: A PRELUDE TO HERSCHEL AND ALMA , 2005 .

[61]  K. Rice,et al.  Protostars and Planets V , 2005 .

[62]  A. Karimi,et al.  Master‟s thesis , 2011 .

[63]  J. Bernard,et al.  Inverse temperature dependence of the dust submillimeter spectral index , 2003, astro-ph/0310091.

[64]  C. Aspin THE EVOLUTIONARY STATE OF STARS IN THE NGC 1333S STAR FORMATION REGION , 2003 .

[65]  S. Chapman,et al.  Submillimetre and far-infrared spectral energy distributions of galaxies: the luminosity-temperature relation and consequences for photometric redshifts , 2002, astro-ph/0209450.

[66]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[67]  G. Sandell,et al.  NGC 1333—Protostars, Dust Shells, and Triggered Star Formation , 2000 .

[68]  L. Mundy,et al.  Modelling the Submillimeter Emission from Pre-Protostellar Cores , 2001, astro-ph/0104238.

[69]  L. Mundy,et al.  Tracing the Mass during Low-Mass Star Formation. II. Modeling the Submillimeter Emission from Preprotostellar Cores , 2000, astro-ph/0006183.

[70]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[71]  J. Richer,et al.  The Structure of Protostellar Envelopes Derived from Submillimeter Continuum Images , 1999, astro-ph/9909494.

[72]  C. Chandler,et al.  The circumstellar envelopes around three protostars in Taurus , 1998 .

[73]  G. Herbig The Young Cluster IC 348 , 1998 .

[74]  J. Brucato,et al.  Temperature Dependence of the Absorption Coefficient of Cosmic Analog Grains in the Wavelength Range 20 Microns to 2 Millimeters , 1998 .

[75]  G. Anglada,et al.  Is SVS 13 the Exciting Source of the HH 7-11 Flow? , 1997 .

[76]  R. Sutherland,et al.  New Herbig-Haro Flows in L1448 and L1455 , 1997 .

[77]  S. Beckwith,et al.  Laboratory Results on Millimeter-Wave Absorption in Silicate Grain Materials at Cryogenic Temperatures , 1996 .

[78]  T. Henning,et al.  Dust opacities in dense regions , 1995 .

[79]  A. Taylor,et al.  Radio emission from the stars and the sun , 1995 .

[80]  M. Wolfire,et al.  Circumstellar dust emission models , 1994 .

[81]  K. Miyake,et al.  Effects of Particle Size Distribution on Opacity Curves of Protoplanetary Disks around T Tauri Stars , 1993 .

[82]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[83]  K. Černis Interstellar extinction in the vicinity of the reflection nebula NGC 1333 in Perseus , 1990 .

[84]  D. Hollenbach,et al.  Molecule Formation and Infrared Emission in Fast Interstellar Shocks. III. Results for J Shocks in Molecular Clouds , 1989 .

[85]  D. Egret,et al.  The simbad astronomical database , 1991 .

[86]  R. E. Jennings,et al.  IRAS observations of NGC 1333 , 1987 .

[87]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[88]  B. Draine Magneto-Hydrodynamic Shock Waves in Molecular Clouds , 1983 .

[89]  R. Snell,et al.  High velocity molecular gas near Herbig-Haro objects HH 7-11. , 1981 .

[90]  S. Whitcomb,et al.  Far-infrared observations of the globule B335 , 1980 .

[91]  N. Scoville,et al.  Infrared sources in molecular clouds. , 1976 .

[92]  P. Aannestad Absorptive properties of silicate core-mantle grains , 1975 .