Global Existence for a Kinetic Model of Chemotaxis via Dispersion and Strichartz Estimates

We investigate further the existence of solutions to kinetic models of chemotaxis. These are nonlinear transport-scattering equations with a quadratic nonlinearity which have been used to describe the motion of bacteria since the 80's when experimental observations have shown they move by a series of ‘run and tumble’. The existence of solutions has been obtained in several papers Chalub et al. (2004), Hwang et al. (2005a b) using direct and strong dispersive effects. Here, we use the weak dispersion estimates of Castella and Perthame (1996) to prove global existence in various situations depending on the turning kernel. In the most difficult cases, where both the velocities before and after tumbling appear, with the known methods, only Strichartz estimates can give a result, with a smallness assumption.

[1]  Hyung Ju Hwang,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization , 2022 .

[2]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[3]  B. Perthame,et al.  Existence of solutions of the hyperbolic Keller-Segel model , 2006, math/0612485.

[4]  B. Perthame Transport Equations in Biology , 2006 .

[5]  Hyung Ju Hwang,et al.  Global Solutions of Nonlinear Transport Equations for Chemosensitive Movement , 2005, SIAM J. Math. Anal..

[6]  L. Segel,et al.  Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.

[7]  B. Perthame,et al.  Kinetic Models for Chemotaxis and their Drift-Diffusion Limits , 2004 .

[8]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[9]  W. Alt Biased random walk models for chemotaxis and related diffusion approximations , 1980, Journal of mathematical biology.

[10]  Benoît Perthame,et al.  PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .

[11]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[12]  Radek Erban,et al.  Global existence results for complex hyperbolic models of bacterial chemotaxis , 2006, math/0602139.

[13]  R. Glassey,et al.  The Cauchy Problem in Kinetic Theory , 1987 .

[14]  C. Schmeiser,et al.  Global existence for chemotaxis with finite sampling radius , 2006 .

[15]  B. Perthame,et al.  Estimations de Strichartz pour les équations de transport cinétique , 1996 .

[16]  Existence of positive solutions for multi-term non-autonomous fractional differential equations with polynomial coefficients. , 2006 .

[17]  Michael Dellnitz,et al.  The numerical detection of connecting orbits , 2001 .

[18]  Hyung Ju Hwang,et al.  Global existence of classical solutions for a hyperbolic chemotaxis model and its parabolic limit , 2006 .

[19]  小澤 徹,et al.  Nonlinear dispersive equations , 2006 .

[20]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[21]  B. Perthame Mathematical tools for kinetic equations , 2004 .

[22]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.

[23]  J. Rodrigues,et al.  A class of kinetic models for chemotaxis with threshold to prevent overcrowding. , 2006 .

[24]  C. Schmeiser,et al.  A Kinetic Theory Approach for Resolving the Chemotactic Wave Paradox , 2003 .

[25]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[26]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[27]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[28]  B. Perthame,et al.  Derivation of hyperbolic models for chemosensitive movement , 2005, Journal of mathematical biology.

[29]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations Derived from Velocity-Jump Processes , 2000, SIAM J. Appl. Math..