Global Existence for a Kinetic Model of Chemotaxis via Dispersion and Strichartz Estimates
暂无分享,去创建一个
Benoit Perthame | Nikolaos Bournaveas | Vincent Calvez | B. Perthame | N. Bournaveas | V. Calvez | Susana Guti'errez | Susana Guti'errez
[1] Hyung Ju Hwang,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization Drift-diffusion Limits of Kinetic Models for Chemotaxis: a Generalization , 2022 .
[2] Benoît Perthame,et al. Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .
[3] B. Perthame,et al. Existence of solutions of the hyperbolic Keller-Segel model , 2006, math/0612485.
[4] B. Perthame. Transport Equations in Biology , 2006 .
[5] Hyung Ju Hwang,et al. Global Solutions of Nonlinear Transport Equations for Chemosensitive Movement , 2005, SIAM J. Math. Anal..
[6] L. Segel,et al. Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.
[7] B. Perthame,et al. Kinetic Models for Chemotaxis and their Drift-Diffusion Limits , 2004 .
[8] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[9] W. Alt. Biased random walk models for chemotaxis and related diffusion approximations , 1980, Journal of mathematical biology.
[10] Benoît Perthame,et al. PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .
[11] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[12] Radek Erban,et al. Global existence results for complex hyperbolic models of bacterial chemotaxis , 2006, math/0602139.
[13] R. Glassey,et al. The Cauchy Problem in Kinetic Theory , 1987 .
[14] C. Schmeiser,et al. Global existence for chemotaxis with finite sampling radius , 2006 .
[15] B. Perthame,et al. Estimations de Strichartz pour les équations de transport cinétique , 1996 .
[16] Existence of positive solutions for multi-term non-autonomous fractional differential equations with polynomial coefficients. , 2006 .
[17] Michael Dellnitz,et al. The numerical detection of connecting orbits , 2001 .
[18] Hyung Ju Hwang,et al. Global existence of classical solutions for a hyperbolic chemotaxis model and its parabolic limit , 2006 .
[19] 小澤 徹,et al. Nonlinear dispersive equations , 2006 .
[20] Benoît Perthame,et al. Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .
[21] B. Perthame. Mathematical tools for kinetic equations , 2004 .
[22] H. Othmer,et al. Models of dispersal in biological systems , 1988, Journal of mathematical biology.
[23] J. Rodrigues,et al. A class of kinetic models for chemotaxis with threshold to prevent overcrowding. , 2006 .
[24] C. Schmeiser,et al. A Kinetic Theory Approach for Resolving the Chemotactic Wave Paradox , 2003 .
[25] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[26] T. Tao. Nonlinear dispersive equations : local and global analysis , 2006 .
[27] L. Segel,et al. Model for chemotaxis. , 1971, Journal of theoretical biology.
[28] B. Perthame,et al. Derivation of hyperbolic models for chemosensitive movement , 2005, Journal of mathematical biology.
[29] Hans G. Othmer,et al. The Diffusion Limit of Transport Equations Derived from Velocity-Jump Processes , 2000, SIAM J. Appl. Math..