A Reverse Transcriptase-C as 1 Fusion Protein Contains a Cas 6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition Graphical

[1]  Joshua A. Arribere,et al.  A Small RNA Isolation and Sequencing Protocol and Its Application to Assay CRISPR RNA Biogenesis in Bacteria , 2018, Bio-protocol.

[2]  A. Lambowitz,et al.  Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. , 2017, Molecular cell.

[3]  Peter C. Fineran,et al.  Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems , 2017, eLife.

[4]  F. Martínez-Abarca,et al.  The Reverse Transcriptases Associated with CRISPR-Cas Systems , 2017, Scientific Reports.

[5]  Kira S. Makarova,et al.  On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires , 2017, mBio.

[6]  J. E. Peters,et al.  Recruitment of CRISPR-Cas systems by Tn7-like transposons , 2017, Proceedings of the National Academy of Sciences.

[7]  Eugene V Koonin,et al.  Diversity, classification and evolution of CRISPR-Cas systems. , 2017, Current opinion in microbiology.

[8]  D. C. Swarts,et al.  Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. , 2017, Molecular cell.

[9]  Stan J. J. Brouns,et al.  CRISPR-Cas: Adapting to change , 2017, Science.

[10]  E. Koonin,et al.  Reconstruction of the evolution of microbial defense systems , 2017, BMC Evolutionary Biology.

[11]  Kira S. Makarova,et al.  Diversity and evolution of class 2 CRISPR–Cas systems , 2017, Nature Reviews Microbiology.

[12]  Jennifer A. Doudna,et al.  Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection , 2016, Nature.

[13]  Rolf Backofen,et al.  Structural constraints and enzymatic promiscuity in the Cas6-dependent generation of crRNAs , 2016, Nucleic acids research.

[14]  Kira S. Makarova,et al.  Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems , 2016, Science.

[15]  Ines Fonfara,et al.  The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA , 2016, Nature.

[16]  G. Mohr,et al.  Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase–Cas1 fusion protein , 2016, Science.

[17]  A. Lambowitz,et al.  RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase , 2016, RNA.

[18]  Pierre Tufféry,et al.  HHalign-Kbest: exploring sub-optimal alignments for remote homology comparative modeling , 2015, Bioinform..

[19]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[20]  Malcolm F. White,et al.  Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity , 2015, FEMS microbiology reviews.

[21]  S. Zimmerly,et al.  An Unexplored Diversity of Reverse Transcriptases in Bacteria. , 2015, Microbiology spectrum.

[22]  R. Terns,et al.  Cas9 function and host genome sampling in Type II-A CRISPR–Cas adaptation , 2015, Genes & development.

[23]  Narmada Thanki,et al.  CDD: NCBI's conserved domain database , 2014, Nucleic Acids Res..

[24]  R. Barrangou,et al.  The three major types of CRISPR‐Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus , 2014, Molecular microbiology.

[25]  Shiraz A Shah,et al.  CRISPR adaptive immune systems of Archaea , 2014, RNA biology.

[26]  Eugene V Koonin,et al.  The basic building blocks and evolution of CRISPR-CAS systems. , 2013, Biochemical Society transactions.

[27]  A. Sánchez-Amat,et al.  Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity , 2013, MicrobiologyOpen.

[28]  V. Iyer,et al.  Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing , 2013, RNA.

[29]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[30]  M. F. White,et al.  Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing , 2013, The Biochemical journal.

[31]  Hong Li,et al.  Recognition and cleavage of a nonstructured CRISPR RNA by its processing endoribonuclease Cas6. , 2013, Structure.

[32]  Nathaniel Echols,et al.  The Phenix software for automated determination of macromolecular structures. , 2011, Methods.

[33]  Eugene V Koonin,et al.  Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems , 2011, Biology Direct.

[34]  A. MacMillan,et al.  Recognition and maturation of effector RNAs in a CRISPR interference pathway , 2011, Nature Structural &Molecular Biology.

[35]  Dipali G. Sashital,et al.  An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3 , 2011, Nature Structural &Molecular Biology.

[36]  R. Terns,et al.  Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. , 2011, Structure.

[37]  K. Sneppen,et al.  Economy of Operon Formation: Cotranscription Minimizes Shortfall in Protein Complexes , 2010, mBio.

[38]  Jennifer A. Doudna,et al.  Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease , 2010, Science.

[39]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[40]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[41]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[42]  R. Terns,et al.  Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. , 2008, Genes & development.

[43]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[44]  M. Kanehisa,et al.  Systematic survey for novel types of prokaryotic retroelements based on gene neighborhood and protein architecture. , 2008, Molecular biology and evolution.

[45]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[46]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[47]  A. Sánchez-Amat,et al.  Marinomonas mediterranea MMB-1 Transposon Mutagenesis: Isolation of a Multipotent Polyphenol Oxidase Mutant , 2000, Journal of bacteriology.

[48]  B. Snel,et al.  Conservation of gene order: a fingerprint of proteins that physically interact. , 1998, Trends in biochemical sciences.

[49]  Megan L Hochstrasser,et al.  Cutting it close: CRISPR-associated endoribonuclease structure and function. , 2015, Trends in biochemical sciences.

[50]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010 .

[51]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.